TABLE OF CONTENTS

USEFUL WEB SITES .. 3
WELCOME TO THE BIOLOGY DEPARTMENT 4
THE CURRICULUM .. 5
ADVISING SERVICES .. 7
OPPORTUNITIES IN BIOLOGY 8
BIOLOGY PROGRAMS ... 10
 Liberal Program in Biology 11
 Major Program in Biology 12
 Biology Concentrations for Major Programs 13
 Animal Behaviour ... 13
 Biological Diversity and Systematics 13
 Conservation Biology 15
 Ecology Concentrations 16
 General and Applied Ecology 16
 Aquatic Ecology .. 17
 Marine Biology ... 18
 Evolutionary Biology 19
 Human Genetics .. 20
 Molecular Genetics and Development 20
 Neurobiology .. 21
 Honours Program in Biology 23
 Biol. Major Program, Quantitative Biology Option24
 Honours Option in QB 27
 Joint Major in Biology and Mathematics 30
 Joint Major in Computer Science & Biology 33
 Joint Honors in Computer Science & Biology 35
 Minor Programs Directed by the Biology Dept 37
 Biology ... 37
 Biotechnology ... 38
 Minor in Science for Arts students 40
 Additional Minor Programs for Biology Students 44
 Neuroscience ... 44
 Natural History ... 46
 Concentration Advisors in Major Programs 47
 Professors on Leave ... 48

BACHELOR OF ARTS AND SCIENCE49

THE CREDIT WEIGHT/WORKLOAD POLICY51

BIOLOGY COURSES FOR THE FALL TERM52

BIOLOGY COURSES FOR THE WINTER TERM53

SPANNED BIOLOGY COURSES54

BIOLOGY COURSES FOR SUMMER 201754
TABLE OF CONTENTS (cont’d)

<table>
<thead>
<tr>
<th>Section</th>
<th>PAGE#</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEGEP-EQUIVALENT COURSES</td>
<td>55</td>
</tr>
<tr>
<td>BIOL 101</td>
<td>55</td>
</tr>
<tr>
<td>BIOL 102</td>
<td>56</td>
</tr>
<tr>
<td>BIOL 111</td>
<td>56</td>
</tr>
<tr>
<td>BIOL 112</td>
<td>57</td>
</tr>
<tr>
<td>GENERAL AND ADVANCED COURSES IN BIOLOGY</td>
<td>58</td>
</tr>
<tr>
<td>STUDY ABROAD</td>
<td>130</td>
</tr>
<tr>
<td>Exchange Programs</td>
<td>130</td>
</tr>
<tr>
<td>Study Away</td>
<td>130</td>
</tr>
<tr>
<td>FIELD COURSES OFFERED BY HUNTSMAN MARINE SCIENCE CENTRE</td>
<td>131</td>
</tr>
<tr>
<td>FIELD STUDY SEMESTERS</td>
<td>132</td>
</tr>
<tr>
<td>Panama Field Study Semester</td>
<td>132</td>
</tr>
<tr>
<td>Africa Field Study Semester</td>
<td>133</td>
</tr>
<tr>
<td>Barbados Field Study Semester</td>
<td>133</td>
</tr>
<tr>
<td>STUDENT RESOURCES</td>
<td>134</td>
</tr>
<tr>
<td>RESEARCH INTERESTS OF FULL TIME & AFFILIATED STAFF</td>
<td>136</td>
</tr>
</tbody>
</table>

Statement of Academic Integrity:

McGill University values academic integrity. Therefore, all students must understand the meaning and consequences of cheating, plagiarism and other academic offences under the Code of Student Conduct and Disciplinary Procedures (see [www.mcgill.ca/integrity for more information](http://www.mcgill.ca/integrity)).
USEFUL WEB SITES

African Field Semester http://www.mcgill.ca/africa/
Biology Department http://biology.mcgill.ca/
Career Planning Services http://www.mcgill.ca/caps/
Continuing Studies http://www.mcgill.ca/continuingstudies/
Courses permitted outside the Science Faculty
http://www.mcgill.ca/science/sousa/continuing_students/bsc/outside/
Huntsman Marine Institute http://www.huntsmanmarine.ca/
Important Dates http://www.mcgill.ca/importantdates/
Minerva http://www.mcgill.ca/minerva-students/
McGill School of Environment http://www.mcgill.ca/mse/
myCourses (WebCT Vista) http://www.mcgill.ca/lms
Neuroscience Programs http://www.mcgill.ca/neuroscience/
Panama Field Semester http://www.mcgill.ca/pfss/
Student Affairs Office (Arts) http://www.mcgill.ca/oasis/
Student Affairs Office (Science) http://www.mcgill.ca/science/sousa/
Student Services:
 Advising http://www.mcgill.ca/students/advising/
 Counselling Services http://www.mcgill.ca/counselling
 Campus Life & Engagement http://www.mcgill.ca/firstyear/
 Health http://www.mcgill.ca/studenthealth/
 International Students Office http://www.mcgill.ca/internationalstudents
 Scholarships & Student Aid http://www.mcgill.ca/studentaid/
 Students with Disabilities http://www.mcgill.ca/osd/
Student Society of McGill University http://www.ssmu.mcgill.ca/
Summer Studies http://www.mcgill.ca/summer/
WELCOME TO THE BIOLOGY DEPARTMENT

Biology is the study of life. Its scope ranges from the molecular to the ecosystem. It deals with fundamental questions such as the origin and evolution of plants and animals, interactions between living organisms and their environment, mechanisms of embryonic development, structure and function of the living cell and its organelles, molecular basis of inheritance, biochemical and genetic basis of human diseases, and the operation of the brain and the nervous system. The study of Biology has vast practical applications in agriculture, medicine, biotechnology, genetic engineering, environmental protection and conservation.

The programs in Biology provide students with an introduction to the broad spectrum of Biological Sciences in contrast to more specialized programs in Biochemistry, Microbiology, Pharmacology, Physiology and Anatomy and Cell Biology. A B.Sc. degree in Biology prepares students for a wide range of employment opportunities, as well as entry to professional schools in medicine, veterinary science, dentistry, agriculture, nursing, education and library science. It also provides solid background for those interested in careers related to environmental protection, wildlife management, biotechnology and genetic engineering. A B.Sc. degree in Biology can also lead to post-graduate studies and research careers in universities, research institutes, hospitals, and industrial or governmental laboratories.

The Department of Biology’s well-equipped teaching and research laboratories are located in the Stewart Biology Building, 1205 Docteur Penfield Avenue and in the adjacent Bellini Life Sciences Building. Academic staff members, research associates, post-doctoral fellows and graduate students carry out research in areas of molecular biology, human genetics, ecology, animal behaviour, developmental biology, neurobiology, marine biology, plant biology and evolution. Biology’s teaching and research resources are extended by affiliation with the Redpath Museum, the hospitals and research institutes of the McGill University Health Centre, the Montreal Neurological Institute, the Sheldon Biotechnology Institute and the Smithsonian Tropical Research Institute in Panama. Field courses are taught at the research facilities of the Gault Nature Reserve at Mont St. Hilaire, the Morgan Arboretum, the Bellairs Research Institute in Barbados, and the Huntsman Marine Science Centre in New Brunswick. In addition, field stations near Lake Memphremagog and at Schefferville in northern Quebec are available for research projects. Field Study Semesters are offered in Panama and in East Africa.

Undergraduate students are represented by the MBSU (McGill Biology Students Union) in the Departmental Assembly and in Standing Committees. The office of the MBSU is located in room W2/4 of the Stewart Building.

Our Bluebook provides more detailed information on our programs and courses than can fit in the University Calendar. The Bluebook can be downloaded from, or read on, the web at http://biology.mcgill.ca/undergrad/bluebook.html. We hope you find it useful!

Graham Bell FRSC
James McGill Professor
Chair, Biology Department
THE CURRICULUM

The Biology curriculum is taken within the three year, 90-credit BSc or BASC; it follows a two-year CEGEP program or McGill’s Freshman Program, or equivalent. Minimum entrance requirements include two courses in Biology, two in Chemistry, two in Math and one or two in Physics, depending on program and courses chosen.

The Department offers the following Programs of Study:

B.Sc.
1) Liberal Program in Biology
2) Major Program in Biology – includes an option in Quantitative Biology
3) Joint Major in Biology and Mathematics
4) Joint Major in Computer Science and Biology
5) *New for Fall 2016: Joint Honours in Computer Science and Biology
6) Honours Program in Biology – includes an option in Quantitative Biology
7) Minor Program in Biology

BASC
1) Major Concentration in Biology
2) Minor Concentration in Biology

The Department also coordinates the BSc. Minor in Biotechnology and the Minor in Science for Arts Students.

Liberal Program in Biology
The Liberal Program in Biology is less specialized than the Major Program. It comprises a core Science component in Biology, and a breadth component (generally, but not always, a minor) in another area of study.

Major Program in Biology
Students following the Major Program in Biology receive a general education in all aspects of Biology in the first year. In the final two years, students may follow a more specialized concentration, or may continue to take courses from diverse areas of Biology. A Major Program in Biology can also be combined with a Minor Program in another department in Science, Arts, Management or other programs.

Biology Major or Honours: Quantitative Biology Option
Interdisciplinary research that draws from the natural and physical sciences is an important aspect of modern biology. The Quantitative Biology option is designed for students with a deep interest in biology who wish to gain a strong grounding in physical sciences and their application to biological questions. The program has two streams; an Ecology and Evolutionary Biology stream and a Physical Biology stream. Both streams provide a balance of theory and experimental components.

Joint Major in Biology and Mathematics
This program is built on a selection of mathematics and biology courses that recognizes mathematical biology as a field of research, with three streams within biology: Ecology and Evolutionary Ecology, Molecular Evolution, and Neuroscience.

Joint Major or Joint Honours in Computer Science and Biology
This program trains students in the fundamentals of Biology – with a focus on Molecular Biology – and will give them the computational and mathematical skills needed to handle and analyze large biological data sets. Students may choose an unofficial stream.
Honours Program in Biology
The Honours Program in Biology is designed to provide students with an enriched training in Biology and more extensive research experience in a chosen area. A student may apply to enter the Honours program from the Biology Major at the end of the U2 year.

Minor Program in Biology
This 24 credit sequence of Biology courses may be selected by science students taking their primary programs in other departments.

Major Concentration in Biology for the B.A. & Sc. Degree
This Major Concentration in Biology which is restricted to students in the B.A. & Sc., is a planned sequence of courses designed to permit a degree of specialization in either cell/molecular or organismal biology.

Minor Concentration in Biology for the B.A. & Sc. Degree
This Minor Concentration in Biology, which is restricted to students in the B.A. & Sc., is a sequence of courses designed to yield a broad introduction to either cell/molecular or organismal biology.
ADVISING SERVICES

Many sources of information (such as Faculty and Departmental advisors) are available to you in planning your academic program, exploring career opportunities, and clarifying policies and procedures.

The most important function of Departmental Advisors is to advise and assist you in planning a realistic and meaningful program, and they are responsible for the degree programs, which are administered by their departments. All new Biology students requiring 96 credits or fewer to complete their degree should see the Undergraduate Advisor, Nancy Nelson (398-4109), in Room W3/25 to assist them in selecting a program and to discuss first year requirements. Returning students will register in March/April and should contact the Undergraduate Advisor.

In preparation for their interviews with their Advisor, students should consult the timetable available on Minerva and in the Biology Department Bluebook which is available on the web at: http://biology.mcgill.ca/undergrad/bluebook.html to develop a preferred list of courses, including possible electives, noting their scheduled lecture hours. U3 students accepted into the Honours Program should verify their program requirements with the Honours Coordinator (Room W3/25, 398-4109) before registration.

Other important sources of information include Service Point, Faculty Advisors, the Financial Aid Office, McGill’s Career Planning Service (CaPS) with its various workshops, Counselling Services, the Office of Students with Disabilities and the Office for International Students.

For information on registration procedures, program selection, course change, course/university withdrawal, faculty transfer and exact dates of events, see the general McGill Calendar.
OPPORTUNITIES IN BIOLOGY

Students who graduate with an undergraduate degree in Biology tend to follow three traditional paths:

1. **Applying to a Professional School** to work in a specified career such as:
 a. Medicine
 b. Dentistry
 c. Nursing
 d. Physical and Occupational Therapy
 e. Law
 f. Speech Therapy
 g. Veterinary Medicine
 h. Pharmacy
 i. Physiotherapy
 j. Teaching (eg Master’s Program in Teaching and Learning)

2. **Applying to Graduate School** to work in research and development in places like:
 a. Academia
 b. Research Institutes
 c. Government Agencies
 d. Research Funds Administration
 e. Private Industry
 f. Genetic Counseling

3. **Applying to Work** in an entry level position such as:
 a. Lab or Research Assistant
 b. Technician
 c. Clinical Assistant
 d. Biological Researcher
 e. Ecologist

Depending on a student’s area of interest, skill set, additional training, and experience gained through summer employment, internships, extra curricular activities, and volunteering, they can potentially use their science knowledge in combination with:

1. **Business** in positions such as:
 a. Marketing
 b. Public Relations
 c. Consulting
 d. Human Resources
 e. Investment Advisor
 f. Quality Control / Quality Assurance
 g. Sales Representative

2. **Education** in positions such as:
 a. Teaching Assistant
 b. Educator / Trainer
 c. Advisor

3. **Communications** in positions such as:
 a. Technical / Scientific Writer
 b. Editor
 c. Web Developer / Producers
 d. Journalist
 e. Medical Illustrator
4. **Other** positions such as:
 a. Patent Agent
 b. Policy Analyst
 c. Fundraiser
 d. Data Management Administrator
 e. Public Health Officer

The opportunities following a bachelor degree in Biology are quite diverse. Many graduates will work in a variety of **industries** for a variety of **employers** such as:

<table>
<thead>
<tr>
<th>Biotechnology</th>
<th>Conservation</th>
<th>Environmental</th>
<th>Government</th>
<th>Health Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal</td>
<td>Manufacturing</td>
<td>Museum</td>
<td>Pharmaceutical</td>
<td>Publishing</td>
</tr>
<tr>
<td>Public Health</td>
<td>Research Centers</td>
<td>Academia</td>
<td>Wildlife / Fisheries</td>
<td>Biomedical</td>
</tr>
<tr>
<td>Rehabilitation Centers</td>
<td>Medical Supply Companies</td>
<td>Management Consulting</td>
<td>International Agencies</td>
<td>Agriculture and Forestry</td>
</tr>
</tbody>
</table>

For more information and assistance regarding your future career plans and how to succeed,
Check out http://www.mcgill.ca/caps/students/services and http://www.mcgill.ca/caps/publications

Visit the **McGill Career Planning Service (CaPS)** in person at 3600 McTavish, suite 2200, online at www.mcgill.ca/caps

Or call to schedule an appointment with a Career Advisor at 514-398-3304 ext.0321.
BIOLOGY B.Sc. PROGRAMS

There are several types of departmental programs in Biology with differing levels of specialization.

- Liberal Program in Biology (45-47 credits)
- Major Program in Biology (58-59 credits)*
- Joint Major in Biology and Mathematics (76 credits)
- Joint Major in Computer Science and Biology (69-73 credits)
- Joint Honours in Computer Science and Biology (75-79 credits)
- Honours Program in Biology (71-72 credits)**
- Minor Program in Biology (24 or 25 credits) for BSc. students whose primary program is in another department.

*Within the Biology Major Program is an Option in Quantitative Biology (68-73 credits).

**Within the Honours Program in Biology is an Option in Honours Quantitative Biology (74-79 credits)

Students in the Faculty of Science may also select an 18-24 credit Minor Program, which is completed in parallel with the departmental program. **These require a minimum of 18 non-overlapping credits.** Minors are offered by the Faculty of Science; also several Minor Concentrations offered by the Faculty of Arts and other faculties are open to science students (Minor programs are listed in the Science section of the Calendar).

Courses used to fulfill program requirements must be passed with grades of "C" or better. The remaining credits for the bachelor degree (electives) may be selected from offerings of the Faculties of Arts and Science plus a limited number of courses from other faculties. See: http://www.mcgill.ca/science/sousa/continuing_students/bsc/outside/

Students who have already passed the equivalent of a required course at CEGEP, or have exemptions granted for work done elsewhere, should consult the Undergraduate Advisors regarding substitutions.

Pre-Program Requirements

Requirements for the Major and Honours programs in Biology are 2 courses in elementary Biology, 2 courses in general Chemistry, 2 courses in Calculus and 2 courses in Physics (Mechanics and Electromagnetism). Students entering into the BA & SC, the Liberal Program and the Biology Science Minor have the same Biology, Chemistry and Mathematics requirements. The Physics requirements will vary according to their future direction. All students need to take PHYS 101 or 131. If the student intends to eventually take either BIOL 301 or BIOL 306, then PHYS 102 is also required.

Note: Students planning to take one of the Joint Programs or the Quantitative Biology Option should consult the Undergraduate Advisor to ensure they are taking the appropriate pre-requirements.
LIBERAL PROGRAM: CORE SCIENCE COMPONENT IN BIOLOGY
(45-47 credits)

B.Sc. Liberal Program in Biology

The BSc Liberal program is a science option which allows students to combine a core science component with a breadth component. The Biology core science component consists of 45-47 credits with a breadth component of at least 18 additional credits, chosen from: a minor in another Science area; a science field study; a minor from a wide variety of other disciplines (Arts, Kinesiology, Education, Engineering, Biotechnology and Management); an Arts Major Concentration, a second core science component or a General Science breadth.

By combining the core science component of Biology with the breadth component, the Liberal option is a flexible program, offering students the benefit of a fundamental knowledge of Biology with an opportunity to broaden their studies both inside and outside of Science. This program is well suited to students with varied interests who don’t want to focus solely on Biology in their studies.

CORE BIOLOGY COMPONENT

REQUIRED COURSES (19 CREDITS)

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 200</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 201</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 202</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 205</td>
<td>Biology of Organisms</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 215</td>
<td>Introduction to Ecology and Evolution</td>
</tr>
<tr>
<td>4</td>
<td>Chemistry</td>
<td>CHEM 212*</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
</tbody>
</table>

*If a student has already taken CHEM 212 or its equivalent, the credits can be made up with a complementary.

COMPLEMENTARY COURSES (27-28 CREDITS)

3 or 4 credits selected from:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 206</td>
<td>Methods in Biology of Organisms</td>
</tr>
<tr>
<td>4</td>
<td>Biology</td>
<td>BIOL 301</td>
<td>Cell and Molecular Laboratory</td>
</tr>
</tbody>
</table>

Plus 24 credits of Biology courses, 9 credits of which, in consultation with the Program Advisor, can be replaced with appropriate Science courses from other departments. Up to 6 of the 24 complementary credits may be taken at the 200 level.
MAJOR PROGRAM IN BIOLOGY (58-59 CREDITS)

The Biology Major Program has been designed to offer broad training in those areas of biology in which the department has outstanding human and physical resources. The Major consists of 58-59 credits: 22 basic required biology credits and 36-37 additional complementary credits which are to be chosen by students in consultation with their advisor. Students interested in advanced studies in any biological discipline are strongly advised to develop their skills in computing as appropriate. As an aid to students wishing to specialize, the concentrations set out below (page 13) list key and other suggested courses by discipline. They are suggestions, not requirements.

(As of Fall 2014)

REQUIRED BIOLOGY COURSES (25-26 CREDITS)

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 200</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 201</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 202</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 205</td>
<td>Biology of Organisms</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 206</td>
<td>Methods in Biology of Organisms</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 215</td>
<td>Introduction to Ecology and Evolution</td>
</tr>
<tr>
<td>4</td>
<td>Biology</td>
<td>BIOL 301</td>
<td>Cell and Molecular Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>Chemistry</td>
<td>CHEM 212*</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
</tbody>
</table>

If a student has already taken CHEM 212 or its equivalent, the credits can be made up with a 3-credit course approved by the Biology Advisor.

CORE COMPLEMENTARY COURSES (12 CREDITS)

12 CREDITS SELECTED FROM:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 300</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 303</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 306</td>
<td>Neural Basis of Behaviour</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 308</td>
<td>Ecological Dynamics</td>
</tr>
</tbody>
</table>

OTHER COMPLEMENTARY COURSES (21 CREDITS)

21 CREDITS OF BIOLOGY COURSES:

These must all be at the 300+ level, of which 6 credits must be at the 400+ level as of Fall 2014 entry. With permission of the Biology Adviser, up to 9 credits may be taken from other Science department courses (300+ level).

Unless part of the Major Program, prerequisites for these courses must be taken as electives.
BIOLOGY CONCENTRATIONS FOR THE MAJOR PROGRAM

These concentrations are only guidelines for specialized training. They do not constitute sets of requirements, nor will the name of the concentration appear on your transcript. Courses below the 300 level, however, can only be taken as electives in the Biology Major. For courses taken outside the Faculties of Arts and Science, please see University guidelines. (http://www.mcgill.ca/science/sousa/continuing_students/bsc/outside/)

ANIMAL BEHAVIOUR

Understanding the diverse ways in which animals navigate their physical and social environments and process information to maximize survival and reproductive success constitutes the subject matter of behaviour. Multiple approaches are used to study these questions, frequently being employed together. Some focus on the ecological consequences and determinants of animal behaviour, linking behaviour and environment. Others focus on the physiological, neural, genetic, and developmental mechanisms of behaviour, and still others on the evolution of behaviour. Consequently, many courses from the fields of ecology, evolutionary biology, neurobiology, psychology and anthropology will be relevant. Some courses that focus on a particular taxonomic group such as birds (Natural Resource Sciences WILD 420), amphibians and reptiles (BIOL 427) and marine mammals (BIOL 335) include a significant amount of material on behaviour as well.

KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 305</td>
<td>Animal Diversity</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 306</td>
<td>Neural Basis of Behaviour</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 307</td>
<td>Behavioural Ecology</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 320</td>
<td>Evolution of Brain and Behaviour</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 331</td>
<td>Ecology/Behaviour Field Course</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 334D1/D2</td>
<td>Applied Tropical Ecology</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>or another field course with a significant behavioural component</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 373</td>
<td>Biometry</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 507</td>
<td>Animal Communication</td>
<td></td>
</tr>
</tbody>
</table>

OTHER SUGGESTED COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BIOL 377</td>
<td>Independent Reading Project</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BIOL 468D1/D2</td>
<td>Independent Research Project 3</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>BIOL 469D1/D2</td>
<td>Independent Research Project 4</td>
<td></td>
</tr>
</tbody>
</table>

BIOLOGICAL DIVERSITY AND SYSTEMATICS

The immense variety of living things is one of the defining features of the natural world. The study of biological diversity is a scientific discipline in its own right, closely connected to ecology and evolutionary biology. Biodiversity science addresses how new species are formed, the ecological processes that maintain such a wide variety of different kinds of organisms, and why organisms become extinct. It is concerned with the characteristics of different organisms, and emphasizes the detailed study of particular groups. Our
knowledge of diversity is organized through the study of systematics which seeks to understand the history of life through the phylogenetic and genetic relationships of living things. An appreciation of diversity and knowledge of the principles and procedures of systematics are essential in ecology and evolutionary biology, and underlie all work in resource utilization and conservation biology.

KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 305</td>
<td>Animal Diversity</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>BIOL 373</td>
<td>Biometry</td>
</tr>
</tbody>
</table>

OTHER SUGGESTED COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 240</td>
<td>Monteregian Flora</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 310</td>
<td>Biodiversity and Ecosystems</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 320</td>
<td>Evolution of Brain and Behaviour</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 324</td>
<td>Ecological Genetics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 342</td>
<td>Contemporary Topics in Aquatic Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 350</td>
<td>Insect Biology and Control</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 352</td>
<td>Vertebrate Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 377</td>
<td>Independent Reading: Project</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 418</td>
<td>Freshwater Invertebrate Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 427</td>
<td>Herpetology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 428</td>
<td>Biological Diversity in Africa</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 429</td>
<td>East African Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 463</td>
<td>Mammalian Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 465</td>
<td>Conservation Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>6</td>
<td>Biology</td>
<td>BIOL 468D1/D2</td>
<td>Independent Research Project 3</td>
</tr>
<tr>
<td>9</td>
<td>Biology</td>
<td>BIOL 469D1/D2</td>
<td>Independent Research Project 4</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 515</td>
<td>Advances in Aquatic Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 540</td>
<td>Ecology of species Invasions</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 569</td>
<td>Developmental Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 594</td>
<td>Advanced Evolutionary Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Redpath Museum</td>
<td>REDM 400</td>
<td>East African Natural History</td>
</tr>
<tr>
<td>3</td>
<td>Redpath Museum</td>
<td>REDM 405</td>
<td>East African Natural History</td>
</tr>
</tbody>
</table>

SUGGESTED FIELD COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 331</td>
<td>Ecology/Behaviour Field Course</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 334D1/D2</td>
<td>Applied Tropical Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 573</td>
<td>Vertebrate Palaeontology Field Studies</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 335</td>
<td>Marine Mammals</td>
</tr>
</tbody>
</table>

SUGGESTED COURSES GIVEN AT MACDONALD CAMPUS
(Please consult http://www.mcgill.ca/science/student/continuingstudents/bsc/outside for rules and restrictions)

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Natural Res Sci.</td>
<td>ENTO 440</td>
<td>Insect Diversity</td>
</tr>
<tr>
<td>3</td>
<td>Plant Science</td>
<td>PLNT 358</td>
<td>Flowering Plant Diversity</td>
</tr>
<tr>
<td>3</td>
<td>Plant Science</td>
<td>PLNT 358</td>
<td>Flowering Plant Diversity</td>
</tr>
</tbody>
</table>

14
CONSERVATION BIOLOGY

Conservation biology is the study and protection of biological diversity. It is a scientific discipline closely connecting ecology and evolutionary biology with applications in public policy and management. Conservation biology focuses on protecting biological diversity and keeping normal evolutionary processes working within a functional ecological context. As a science, it deals with issues of how the wide variety of organisms and ecosystems can be maintained and prevented from declining. It considers population and habitat viability and complexity in the face of threats and perturbations. Cognizance of biological diversity, knowledge, and expertise in both ecology and evolutionary biology, and appreciation for the political, social, and economic contexts of the biodiversity crisis underlie all work in conservation biology.

KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 308</td>
<td>Ecological Dynamics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 310</td>
<td>Biodiversity and Ecosystems</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 373</td>
<td>Biometry</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 465</td>
<td>Conservation Biology</td>
</tr>
</tbody>
</table>

Plus at least one of the following field courses:

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 331</td>
<td>Ecology/Behaviour Field Course</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 334D1/D2</td>
<td>Applied Tropical Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 428</td>
<td>Biological Diversity in Africa</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 429</td>
<td>East African Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 553</td>
<td>Neotropical Environment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 305</td>
<td>Animal Diversity</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 307</td>
<td>Behavioural Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 324</td>
<td>Ecological Genetics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 335</td>
<td>Marine Mammals</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 342</td>
<td>Contemporary Topics in Aquatic Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 350</td>
<td>Insect Biology and Control</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 377</td>
<td>Independent Reading Project</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 413</td>
<td>Reading Project</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 427</td>
<td>Herpetology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 434</td>
<td>Theoretical Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>6</td>
<td>Biology</td>
<td>BIOL 468D1/D2</td>
<td>Independent Research Project 3</td>
</tr>
<tr>
<td>9</td>
<td>Biology</td>
<td>BIOL 469D1/D2</td>
<td>Independent Research Project 4</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 510</td>
<td>Advances in Community Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 515</td>
<td>Advances in Aquatic Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 540</td>
<td>Ecology of Species Invasions</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 594</td>
<td>Advanced Evolutionary Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Economics</td>
<td>ECON 225</td>
<td>Economics of the Environment</td>
</tr>
<tr>
<td>3</td>
<td>Economics</td>
<td>ECON 326</td>
<td>Ecological Economics</td>
</tr>
</tbody>
</table>
CONCENTRATIONS AVAILABLE WITHIN THE AREA OF ECOCY

Ecology is the study of the interactions between organisms and environment that affect distribution, abundance, and other characteristics of the organisms. A strong analytical and quantitative orientation is common to all areas of ecology, and thus students wishing to specialize in these areas are strongly encouraged to develop their background in statistical analysis, computing, and mathematical modeling (e.g. BIOL 373, COMP 202). Many of our ecology courses feature a strong analytical component, and students will find that background preparation in this area is very useful, if not essential. Ecology depends heavily on field courses, which should be considered as vital to all concentrations in this area.

GENERAL AND APPLIED ECOLOGY

The concentration in General and Applied Ecology is designed to introduce the breadth of contemporary ecology, at the levels of the ecosystem, communities and populations, and at the level of the individual organism, with an accent on the application of this material to the practical problems of environmental biology, including the management of natural resources and pests. The concentration focuses on ecology courses dealing with general principles and with particular groups of organisms, combined with field courses in ecology and courses in statistics and computing. Students are encouraged to supplement courses listed as part of this concentration with allied subjects from aquatic ecology, behavioural ecology, evolutionary biology, marine biology, and other concentrations in Biology and from other sciences. Such selections should be made with the help of the academic advisor. By appropriate selection of courses, students can complement these courses with a minor in Environmental Studies.

The group of ecologists available at McGill is among the largest, most diverse, and most active in Canada. There is ample opportunity through independent study and summer employment for involvement in a wide range of contemporary research, including terrestrial, aquatic, theoretical, evolutionary and behavioural ecology.

KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 305</td>
<td>Animal Diversity</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 308</td>
<td>Ecological Dynamics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 331</td>
<td>Ecology/Behaviour Field Course</td>
</tr>
<tr>
<td>3 or BIOL 334D1/D2</td>
<td>Applied Tropical Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 342</td>
<td>Contemporary Topics in Aquatic Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 350</td>
<td>Insect Biology and Control</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 373</td>
<td>Biometry</td>
</tr>
<tr>
<td>3</td>
<td>Computer Science</td>
<td>COMP 202</td>
<td>Foundations of Programming</td>
</tr>
<tr>
<td>3</td>
<td>Computer Science</td>
<td>COMP 273</td>
<td>Introduction to Computer Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 307</td>
<td>Behavioural Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 324</td>
<td>Ecological Genetics</td>
</tr>
</tbody>
</table>
AQUATIC ECOSYSTEM

This concentration is designed to introduce the principles of ecology as they pertain to aquatic biota and, more broadly, aquatic ecosystems. Since it is essential to know how knowledge is obtained, as well as what has been learned, one of the courses (Limnology) places an emphasis on field work and one of the courses (Biological Oceanography) concentrates on the techniques used in the laboratory. To give students an opportunity to work through all of the steps involved in initiating a project of their own design, we also offer a research methods course (Advances in Aquatic Ecology). There is also a variety of courses in aquatic disciplines offered in other departments that complement the aquatic ecology courses offered in Biology. By appropriate selection of courses in consultation with advisors, it is possible to complement this concentration with a minor in Environmental Studies.

There are many ecologists at McGill with aquatic interests, and they are among the best and most active in Canada. Consequently, there is ample opportunity through independent study and Honours projects as well as summer employment for involvement in a wide range of contemporary research. Current research projects include: the cycling of nutrients and contaminants through aquatic ecosystems, the ecology of lake eutrophication, research on invasive species in the St. Lawrence system, and the ecology of foraging and respiration in fishes.

KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 305</td>
<td>Animal Diversity</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 308</td>
<td>Ecological Dynamics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 331</td>
<td>Ecology/Behaviour Field Course</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td>another field course</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 342</td>
<td>Contemporary Topics in Aquatic Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 373</td>
<td>Biometry</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 418</td>
<td>Freshwater Invertebrate Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 427</td>
<td>Herpetology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 432</td>
<td>Limnology</td>
</tr>
<tr>
<td>3</td>
<td>Natural Res. Sciences</td>
<td>ENVB 315</td>
<td>Science of Inland Waters (Macdonald Campus)</td>
</tr>
<tr>
<td>3</td>
<td>Computer Science</td>
<td>COMP 202</td>
<td>Foundations of Programming</td>
</tr>
<tr>
<td>3</td>
<td>Computer Science</td>
<td>COMP 273</td>
<td>Introduction to Computer Systems</td>
</tr>
<tr>
<td>3</td>
<td>Computer Science</td>
<td>COMP 273</td>
<td>Introduction to Computer Systems</td>
</tr>
</tbody>
</table>
OTHER SUGGESTED COURSES

<table>
<thead>
<tr>
<th>Credits</th>
<th>Dept.</th>
<th>Course #</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 307</td>
<td>Behavioural Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 429</td>
<td>East African Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 434</td>
<td>Theoretical Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>BIOL 468D1/D2</td>
<td>Independent Research Project 3</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>BIOL 469D1/D2</td>
<td>Independent Research Project 4</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 540</td>
<td>Ecology of Species Invasions</td>
</tr>
<tr>
<td>3</td>
<td>Geography</td>
<td>GEOG 305</td>
<td>Soils and Environment</td>
</tr>
<tr>
<td>3</td>
<td>Geography</td>
<td>GEOG 306</td>
<td>Raster Geo-Information Science</td>
</tr>
<tr>
<td>3</td>
<td>Geography</td>
<td>GEOG 308</td>
<td>Remote Sensing</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>GEOG 322</td>
<td>Environmental Hydrology</td>
</tr>
<tr>
<td>3</td>
<td>Redpath Museum</td>
<td>REDM 405</td>
<td>East African Natural History</td>
</tr>
</tbody>
</table>

MARINE BIOLOGY

This concentration is designed to offer students a broad introduction to Marine Biology and Marine Ecology which will form the basis for graduate studies in these fields, or for employment in Aquatic Biology and Oceanography.

KEY COURSES

<table>
<thead>
<tr>
<th>Credits</th>
<th>Dept.</th>
<th>Course #</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 305</td>
<td>Animal Diversity</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 308</td>
<td>Ecological Dynamics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 335</td>
<td>Marine Mammals</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 342</td>
<td>Contemporary Topics in Aquatic Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 373</td>
<td>Biometry</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 441</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 515</td>
<td>Advances in Aquatic Ecology</td>
</tr>
</tbody>
</table>

OTHER SUGGESTED COURSES

<table>
<thead>
<tr>
<th>Credits</th>
<th>Dept.</th>
<th>Course #</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 331</td>
<td>Ecology/Behaviour Field Course</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 334D1/D2</td>
<td>Applied Tropical Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 418</td>
<td>Freshwater Invertebrate Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 429</td>
<td>East African Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 432</td>
<td>Limnology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 434</td>
<td>Theoretical Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 465</td>
<td>Conservation Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>BIOL 468D1/D2</td>
<td>Independent Research Project 3</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>BIOL 469D1/D2</td>
<td>Independent Research Project 4</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 540</td>
<td>Ecology of Species Invasions</td>
</tr>
<tr>
<td>3</td>
<td>Atmos. & Oc. Sciences</td>
<td>ATOC 512</td>
<td>Atmospheric and Oceanic Dynamics</td>
</tr>
<tr>
<td>3</td>
<td>Earth & Plan. Sciences</td>
<td>EPSC 542</td>
<td>Chemical Oceanography</td>
</tr>
</tbody>
</table>

For students intending to proceed to graduate work, one independent studies course (BIOL 466; BIOL 467 or BIOL 468) is recommended. Due to the importance of numerical analyses in all fields of Ecology, courses in bio-statistical analysis (e.g., BIOL 373) and computer science (COMP 202) are highly recommended.
EVOLUTIONARY BIOLOGY

Evolutionary biology is an organizing principle of biology. It is the study of the patterns of the history of life and the processes that shaped it. Evolutionary biologists aim to understand how biodiversity is generated and lost over time. Research approaches include: how organisms are related, how organisms adapt to their environment, how the processes of natural selection, genetic drift, and migration shape natural and laboratory populations, what the fossil record reveals about the history of life, and how novelty in organisms arise.

KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 305</td>
<td>Animal Diversity</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 307</td>
<td>Behavioural Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 320</td>
<td>Evolution of Brain and Behaviour</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 324</td>
<td>Ecological Genetics</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 331</td>
<td>Ecology/Behaviour Field Course</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 352</td>
<td>Vertebrate Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 373</td>
<td>Biometry</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 377</td>
<td>Independent Reading Project</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 463</td>
<td>Mammalian Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>6</td>
<td>Biology</td>
<td>BIOL 468D1/D2</td>
<td>Independent Research Project 3</td>
</tr>
<tr>
<td>9</td>
<td>Biology</td>
<td>BIOL 469D1/D2</td>
<td>Independent Research Project 4</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 569</td>
<td>Developmental Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 573</td>
<td>Vertebrate Palaeontology Field Studies</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 594</td>
<td>Advanced Evolutionary Ecology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 240</td>
<td>Monteregian Flora</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 335</td>
<td>Marine Mammals</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 350</td>
<td>Insect Biology and Control</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 427</td>
<td>Herpetology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 428</td>
<td>Biological Diversity in Africa</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 463</td>
<td>Mammalian Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Plant Science</td>
<td>PLNT 358</td>
<td>Flowering Plant Diversity</td>
</tr>
<tr>
<td>3</td>
<td>Resource Development</td>
<td>WILD 420</td>
<td>Ornithology</td>
</tr>
</tbody>
</table>

OTHER SUGGESTED COURSES IN GENETICS AND DEVELOPMENT

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 300</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 303</td>
<td>Developmental Biology</td>
</tr>
</tbody>
</table>

OTHER SUGGESTED COURSES IN ECOLOGY AND BEHAVIOUR

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 309</td>
<td>Mathematical Models in Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 429</td>
<td>East African Ecology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 434</td>
<td>Theoretical Ecology</td>
</tr>
</tbody>
</table>
The courses recommended for students interested in Human Genetics are designed to offer a broad perspective in this rapidly advancing area of biology. Genetics is covered at different levels of organization (gene, genome, chromosome, cell, organism and population), using pertinent examples from all species, but with a special emphasis on humans.

KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Biology</td>
<td>BIOL 301</td>
<td>Cell and Molecular Laboratory</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 370</td>
<td>Human Genetics Applied</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 373</td>
<td>Biometry</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 416</td>
<td>Genetics of Mammalian Development</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 520</td>
<td>Gene Activity in Development</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 568</td>
<td>Topics on the Human Genome</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BIOL 575</td>
<td>Human Biochemical Genetics</td>
<td></td>
</tr>
</tbody>
</table>

OTHER SUGGESTED COURSES

3	Biology	BIOL 314	Molecular Biology of Oncogenes
3	BIOL 377	Independent Reading Project	
3	BIOL 466	Independent Research Project 1	
3	BIOL 467	Independent Research Project 2	
6	BIOL 468D1/D2	Independent Research Project 3	
9	BIOL 469D1/D2	Independent Research Project 4	
3	Biochemistry	BIOC 311	Metabolic Biochemistry
3	Chemistry	CHEM 203	Survey of Physical Chemistry
3	CHEM 204	Physical Chemistry/Biological Sciences 1	
3	combined with CHEM 214	Physical Chemistry/Biological Sciences 2	
	CHEM 222	Introductory Organic Chemistry 2	
3	Human Genetics *HGEN 396	Human Genetic Research Project	
3	HGEN 400	Genetics in Medicine	
3	Microbiology	MIMM 314	Immunology

HGEN 396 can only be taken as an elective. It can count towards the requirements of the Dean’s Multidisciplinary Undergraduate Research List (DMURL)

MOLECULAR GENETICS AND DEVELOPMENT

The discoveries that have fuelled the ongoing biomedical and biotechnology revolution have been derived from the fusion of a number of fields of biological investigation, including molecular biology, genetics, cellular and developmental biology, and biochemistry. A substantial amount of this research has been conducted upon model eukaryotic organisms, such as yeast, the fruit fly (Drosophila), the nematode (C. elegans), and the mustard weed (Arabidopsis). In the molecular genetics and development concentration, students will obtain a comprehensive understanding of how the study of these “model eukaryotes” has advanced our knowledge of the mechanisms responsible for cellular function and organismal development. Graduates from this concentration will be well prepared to pursue higher degrees in the fields of basic biology, biotechnology, and biomedicine or to assume a wide variety of positions in government, universities, and medical or industrial institutions.
KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 300</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td>4</td>
<td>Biology</td>
<td>BIOL 301</td>
<td>Cell and Molecular Laboratory</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 303</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 373</td>
<td>Biometry</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 569</td>
<td>Developmental Evolution</td>
</tr>
<tr>
<td>3</td>
<td>Chemistry</td>
<td>CHEM 203</td>
<td>Survey of Physical Chemistry</td>
</tr>
<tr>
<td>3</td>
<td>Chemistry</td>
<td>CHEM 204</td>
<td>Physical Chemistry/Biological Sciences 1</td>
</tr>
<tr>
<td>3</td>
<td>Chemistry</td>
<td>CHEM 214</td>
<td>Physical Chemistry/Biological Sciences 2</td>
</tr>
</tbody>
</table>

OTHER SUGGESTED COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 313</td>
<td>Biomembranes and Organelles</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 314</td>
<td>Molecular Biology of Oncogenes</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 316</td>
<td>Biomembranes and Organelles</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 370</td>
<td>Human Genetics Applied</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 416</td>
<td>Genetics of Mammalian Development</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>6</td>
<td>Biology</td>
<td>BIOL 468D1/D2</td>
<td>Independent Research Project 3</td>
</tr>
<tr>
<td>9</td>
<td>Biology</td>
<td>BIOL 469D1/D2</td>
<td>Independent Research Project 4</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 518</td>
<td>Advanced Topics in Cell Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 520</td>
<td>Gene Activity in Development</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 524</td>
<td>Topics in Molecular Biology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 544</td>
<td>Genetic Basis of Life Span</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 546</td>
<td>Genetics of Model Systems</td>
</tr>
</tbody>
</table>

NEUROBIOLOGY

Nervous systems are perhaps the most complex entities in the natural world, being composed of up to trillions of interconnected cells that must operate in a coordinated manner to produce behaviour which can range from the mundane (e.g., regulation of heart rate) to the magnificent (e.g., musical composition). The discipline of Neurobiology, one of the fastest growing areas of modern biology, seeks to understand the evolution, development, and operation of nervous systems. The Neurobiology concentration addresses these issues by examining neural structure, function and development at levels of organization that range from the molecular to the organismal.

KEY COURSES

<table>
<thead>
<tr>
<th>CREDITS</th>
<th>DEPT.</th>
<th>COURSE #</th>
<th>COURSE TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 306</td>
<td>Neural Basis of Behaviour</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 320</td>
<td>Evolution of Brain and Behaviour</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 373</td>
<td>Biometry</td>
</tr>
<tr>
<td>(or equivalent statistics course)</td>
<td>BIOL 389</td>
<td>Laboratory in Neurobiology</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 507</td>
<td>Animal Communication</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 514</td>
<td>Neurobiology of Learning and Memory</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 530</td>
<td>Advances in Neuroethology</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 532</td>
<td>Developmental Neurobiology Seminar</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 580</td>
<td>Genetic Approaches to Neural Systems</td>
</tr>
<tr>
<td>3</td>
<td>Biology</td>
<td>BIOL 588</td>
<td>Advances in Molecular/Cellular Neurobiology</td>
</tr>
</tbody>
</table>
OTHER SUGGESTED COURSES:

<table>
<thead>
<tr>
<th>Category</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy</td>
<td>ANAT 321</td>
<td>Circuitry of the Human Brain</td>
</tr>
<tr>
<td></td>
<td>ANAT 322</td>
<td>Neuroendocrinology</td>
</tr>
<tr>
<td>Biology</td>
<td>BIOL 300</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td></td>
<td>BIOL 303</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td></td>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td></td>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>Pharmacology</td>
<td>NSCI 200</td>
<td>Introduction to Neuroscience 1</td>
</tr>
<tr>
<td></td>
<td>NSCI 201</td>
<td>Introduction to Neuroscience 2</td>
</tr>
<tr>
<td>Physiology</td>
<td>PHAR 562</td>
<td>General Pharmacology 1</td>
</tr>
<tr>
<td></td>
<td>PHGY 311</td>
<td>Channels, Synapses and Hormones</td>
</tr>
<tr>
<td></td>
<td>PHGY 314</td>
<td>Integrative Neuroscience</td>
</tr>
<tr>
<td></td>
<td>PHGY 425</td>
<td>Analyzing Physiological Systems</td>
</tr>
<tr>
<td></td>
<td>PHGY 451</td>
<td>Advanced Neurophysiology</td>
</tr>
<tr>
<td></td>
<td>PHGY 556</td>
<td>Topics in Systems Neuroscience</td>
</tr>
<tr>
<td>Psychology</td>
<td>PSYC 311</td>
<td>Human Cognition and the Brain</td>
</tr>
<tr>
<td></td>
<td>PSYC 318</td>
<td>Behavioural Neuroscience 2</td>
</tr>
<tr>
<td>Psychiatry</td>
<td>PSYT 455</td>
<td>Neurochemistry</td>
</tr>
<tr>
<td></td>
<td>PSYT 500</td>
<td>Advances: Neurobiology of Mental Disorders</td>
</tr>
</tbody>
</table>
 **HONOURS BIOLOGY PROGRAM (71 – 72 CREDITS)

Students may complete this program with a minimum of 71 credits or a maximum of 72 credits. The Honours program in Biology is designed expressly as a preparation for graduate studies and research, and provides students with an enriched training in biology and some research experience in a chosen area.

Acceptance into the Honours program requires a CGPA of 3.50 and approval of a 9- or 12-credit Independent Studies proposal (see listing of BIOL 479 and BIOL 480 for details). Students also complete a 4-credit Honours Seminar course, BIOL499. For an Honours degree, a minimum CGPA of 3.50 in the U3 year and adherence to the program as outlined below are the additional requirements.

First Class Honours will be awarded to students graduating with a CGPA of 3.75 or better who have successfully completed the Honours program.

Students may apply to enter the Honours Program in Biology near the end of the U2 year by contacting the Biology Undergraduate Advisor, Nancy Nelson, W3/25, phone 398-4109, E-mail: nancy.nelson@mcgill.ca

It is the responsibility of students to visit professors in the department with whom they wish to do their Honours Independent Study and discuss research projects and research space availability. There is a list of professors and outlines of their research interests posted on the Biology web site (see the Faculty listing)

(As of Fall 2014)

Required courses (32-33 credits):

BIOL 200 (3) Molecular Biology
BIOL 201 (3) Cell Biology and Metabolism
BIOL 202 (3) Basic Genetics
BIOL 205 (3) Biology of Organisms
BIOL 206 (3) Methods in Biology of Organisms
BIOL 215 (3) Introduction to Ecology and Evolution
BIOL 301 (4) Cell and Molecular Laboratory
BIOL 373* (3) Biometry
BIOL 499D1/D2 (4) Honours Seminar in Biology
CHEM 212** (4) Introductory Organic Chemistry 1

*If a student has already taken an equivalent statistics course, the credits can be made up with a 3-credit Biology complementary course.

**If a student has already taken CHEM 212 or its equivalent, the credits can be made up with a 3- or 4-credit complementary course to be approved by the Biology Adviser.

Honours complementary course (9-12 credits):

BIOL 479D1/D2 (9) Honours Research Project 1
OR
BIOL 480D1/D2 (12) Honours Research Project 2

Core complementary courses (12 credits):

12 credits selected from:
BIOL 300 (3) Molecular Biology of the Gene
BIOL 303 (3) Developmental Biology
BIOL 304 (3) Evolution
BIOL 306 (3) Neural Basis of Behaviour
BIOL 308 (3) Ecological Dynamics

Other Complementary Courses (15-18 credits):

18 credits of Biology courses at the 300+ level if taking BIOL 479, and 15 credits if taking BIOL 480.
With permission of the Biology Advisor, up to 6 credits may be taken from other Science department courses (300+ level). Up to 6 credits of previous independent research courses may be included.

DEADLINES

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 1</td>
<td>Notification of intent</td>
</tr>
<tr>
<td>Week of Sept. 1</td>
<td>Completed application form with abstract</td>
</tr>
<tr>
<td>Week of Sept. 1</td>
<td>Start of Academic Year and Honours Program</td>
</tr>
<tr>
<td>October 15</td>
<td>Research Proposal due</td>
</tr>
<tr>
<td>Last day of class in April</td>
<td>Research project due</td>
</tr>
</tbody>
</table>

BIOLOGY MAJOR PROGRAM, OPTION IN QUANTITATIVE BIOLOGY

(68-73 credits)

Program Requirements

Interdisciplinary research that draws from the natural and physical sciences is an important aspect of modern biology. The Quantitative Biology option is designed for students with a deep interest in biology who wish to gain a strong grounding in physical sciences and their application to biological questions. The Quantitative Biology option has two streams: an ecology and evolutionary biology stream, and a physical biology stream. Both streams provide a balance of theory and experimental components.

Students may complete this program with a minimum of 68 credits or a maximum of 73 credits depending on whether MATH 222 and CHEM 212 are completed.

Advising notes for U0 students

It is highly recommended that freshman BIOL, CHEM, MATH, and PHYS courses be selected with the Program Advisor to ensure they meet the core requirements of the Quantitative Biology option.
(Program Advisor: Nancy Nelson, nancy.nelson@mcgill.ca; or Coordinator of the QB Option: Dr. Jackie Vogel, jackie.vogel@mcgill.ca)

This program is recommended for U1 students achieving a CGPA of 3.20 or better; and entering CEGEP students with a Math/Science R-score of 28.0 or better.

(Revised Fall 2016)

Required Courses (39 credits)

Biology (14 credits):

(3)	BIOL 200	Molecular Biology
(3)	BIOL 201	Cell Biology and Metabolism
(3)	BIOL 202	Basic Genetics
(3)	BIOL 215	Introduction to Ecology and Evolution
(1)	BIOL 395	Quantitative Biology Seminar 1
(1)	BIOL 495	Quantitative Biology Seminar 2

Chemistry (4 credits)

3-4 credits:

| (4) | CHEM 212* | Introductory Organic Chemistry 1 |

*Students who have taken the equivalent of CHEM 212 can make up the credits with a complementary 3 or 4 credit course in consultation with a stream advisor.
Computer Science (3 Credits)
3 credits from:

(3) COMP 202 Foundations of Programming
(3) OR COMP 250 Introduction to Computer Science

Math (9-12 credits)
From:

(3) MATH 222* Calculus 3
(3) MATH 223 Linear Algebra
(3) MATH 315 Ordinary Differential Equations
(3) MATH 323 Probability

*For students who have NOT taken MATH 150 and MATH 151

Physics (6 credits)
(3) PHYS 230 Dynamics of Simple Systems
(3) PHYS 232 Heat and Waves

Course requirements for Quantitative Biology Streams (25 credits)
24 or 25 credits from one of the following two streams:

Stream 1: Theoretical Ecology and Evolutionary Biology (24 credits)

(3) BIOL 205 Biology of Organisms
(3) BIOL 206 Methods in Biology of Organisms
(3) BIOL 304 Evolution
(3) BIOL 308 Ecological Dynamics

Biology Field Courses (3 credits from the following list or any other field course with permission):

(3) BIOL 240 Moneregian Flora
(3) BIOL 331 Ecology/Behaviour Field Course
(3) BIOL 334 D1/D2 Applied Tropical Ecology
(3) BIOL 432 Limnology

9 credits chosen from the following list, of which 6 credits must be at the 400-level or above:

* Students choose either both BIOL 596 and BIOL 597, or BIOL 598.

(4) BIOL 301 Cell and Molecular Laboratory
(3) BIOL 310 Biodiversity and Ecosystems
(3) BIOL 324 Ecological Genetics
(3) BIOL 432 Limnology
(3) BIOL 434 Theoretical Ecology
(3) BIOL 435 Natural Selection
(3) BIOL 465 Conservation Biology
(3) BIOL 509 Methods in Molecular Ecology
(3) BIOL 510 Advances in Community Ecology
(3) BIOL 515 Advances in Aquatic Ecology
(3) BIOL 540 Ecology of Species Invasions
(3) BIOL 594 Advanced Evolutionary Ecology
(1) BIOL 596* Advanced Experimental Design
Stream 2: Physical Biology (25 credits)

(4) BIOL 301 Cell and Molecular Biology Laboratory
(3) BIOL 319 Introduction to Biophysics
(3) PHYS 333 Thermal and Statistical Physics
(3) PHYS 446 Majors Quantum Physics

300-level complementary courses: 6 credits from the following:
(3) BIOL 300 Molecular Biology of the Gene
(3) BIOL 303 Developmental Biology
(3) BIOL 306 Neural Basis of Behavior
(3) BIOL 309 Mathematical Models in Biology
(3) BIOL 313 Eukaryotic Cell Biology

500-level complementary courses: 6 credits from the following:
(3) BIOL 518 Advanced Topics in Cell Biology
(3) BIOL 520 Gene Activity in Development
(3) BIOL 524 Topics in Molecular Biology
(3) BIOL 530 Advances in Neuroethology
(3) BIOL 551 Principles of Cellular Control
(3) BIOL 588 Advances in Molecular/Cellular Neurobiology

Complementary Courses
Theoretical Ecology and Evolutionary Biology, and Physical Biology streams

9 credits from the following:
Recommendations for either Theoretical and Evolutionary Biology or Physical Biology streams

(3) BIOL 466 Independent Research Project 1
(3) COMP 206 Introduction to Software Systems
(3) COMP 250 Introduction to Computer Science
(3) COMP 251 Algorithms and Data Structures
(3) COMP 350* Numerical Computing
(3) COMP 364 Computer Tools or Life Sciences
(3) MATH 314 Advanced Calculus
(3) MATH 317* Numerical Analysis
(3) MATH 319 Introduction to Partial Differential Equations
(3) MATH 326 Nonlinear Dynamics and Chaos
(3) MATH 327 Matrix Numerical Analysis
(3) MATH 348 Topics in Geometry
(3) MATH 437 Mathematical Models in Biology
(3) MATH 447 Introduction to Stochastic Processes
*Students may take COMP 350 or MATH 317

Recommendations for the Physical Biology Stream
(3) BIEN 310 Introduction to Biomolecular Engineering
(3) BIEN 320 Molecular, Cellular and Tissue Biomechanics
(3) BIEN 340 Transport Processes in Biological Systems
(3) BIEN 510 Nanoparticles in the Medical Sciences
(3) BIEN 530 Imaging and Bioanalytical Instrumentation
(4) CHEM 222 Introductory Organic Chemistry 2
(3) MATH 324 Statistics
Recommendations for Theoretical Ecology and Evolutionary Biology Stream

(3) MATH 204 Principles of Statistics 2
(3) MATH 242 Analysis 1
(3) MATH 324 Statistics
(3) MATH 340 Discrete Structures 2
(3) MATH 423 Regression and Analysis of Variance
(4) MATH 524 Nonparametric Statistics
(4) MATH 525 Sampling Theory and Applications
(3) PHYS 333* Thermal and Statistical Physics

*PHYS 333 is now required for the Physical Biology Stream

Notes:
Option coordinator: Jackie Vogel (Biology)
Stream advisors: Axel Hundemer (Mathematics)
Pierre Francois (Physics)
Derek Ruths, Jerome Waldispohl (Comp Sci.)

HONOURS IN BIOLOGY, QUANTITATIVE BIOLOGY OPTION
(74-79 credits)

Students must attain a 3.50 CGPA to enter (in U3) and to complete the Honours QB option. First Class Honours will be awarded to students in the QB Honours Option graduating with a CGPA of 3.75 or greater. Students may complete this program with a minimum of 74 credits or a maximum of 79 credits depending on whether MATH 222 and CHEM 212 are completed.

(Revised Fall 2016)

Honours Quantitative Biology Option Core Requirements (39 credits)

Biology (14 credits):
(3) BIOL 200 Molecular Biology
(3) BIOL 201 Cell Biology and Metabolism
(3) BIOL 202 Basic Genetics
(3) BIOL 215 Introduction to Ecology and Evolution
(1) BIOL 395 Quantitative Biology Seminar 1
(1) BIOL 495 Quantitative Biology Seminar 2

Chemistry (4 credits)
(4) CHEM 212* Introductory Organic Chemistry 1

*Students who have taken the equivalent of CHEM 212 can make up the credits with a complementary CHEM course in consultation with a stream advisor.

Computer Science (3 Credits)
(3) OR COMP 202 Foundations of Programming
(3) COMP 250 Introduction to Computer Science

Math and Physics Core Courses: (15-18 credits)
Any 6 credits of either MATH or PHYS courses to be taken at the honours level. Honours equivalents of core Math and Physics courses are listed below. Additionally, all 500-level Math courses are considered as honours courses and can be applied to the 6-credit requirement.

Math (9-12 credits)

(3) MATH 222 Calculus 3
(for students who have NOT taken MATH 150 and MATH 151)
(3) MATH 223 Linear Algebra
(3) OR MATH 247 Honours Applied Linear Algebra
(3) MATH 315 Ordinary Differential Equations
(3) OR MATH 325 Honours Ordinary Differential Equations
(3) MATH 323 Probability
(3) OR MATH 356 Honours Probability

Physics (6 credits)

(3) PHYS 230 Dynamics of Simple Systems
(3) OR PHYS 251 Honours Classical Mechanics 1
(3) PHYS 232 Heat and Waves
(3) OR PHYS 253 Thermal Physics

Research Component (6 credits)

(6) BIOL 468 Independent Research Project 3

Complementary Courses (30-31 credits)

Course Requirements for Quantitative Biology Streams (25 credits)

24 or 25 credits from one of the following two streams:

Stream 1: Theoretical Ecology and Evolutionary Biology (24 credits)

(3) BIOL 205 Biology of Organisms
(3) BIOL 206 Methods in Biology of Organisms
(3) BIOL 304 Evolution
(3) BIOL 308 Ecological Dynamics

Biology Field Courses (3 credits from the following list or any other field course with permission):

(3) BIOL 240 Montegarian Flora
(3) BIOL 331 Ecology/Behaviour Field Course
(3) BIOL 334D1/D2 Applied Tropical Ecology
(3) BIOL 432 Limnology

9 credits chosen from the following list, of which 6 credits must be at the 400-level or above:

* Students choose either both BIOL 596 and BIOL 597, or BIOL 598.

(4) BIOL 301 Cell and Molecular Laboratory
(3) BIOL 310 Biodiversity and Ecosystems
(3) BIOL 324 Ecological Genetics
(3) BIOL 432 Limnology
(3) BIOL 434 Theoretical Ecology
(3) BIOL 435 Natural Selection
(3) BIOL 465 Conservation Biology
(3) BIOL 509 Methods in Molecular Ecology
(3) BIOL 510 Advances in Community Ecology
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 515</td>
<td>Advances in Aquatic Ecology</td>
</tr>
<tr>
<td>BIOL 540</td>
<td>Ecology of Species Invasions</td>
</tr>
<tr>
<td>BIOL 594</td>
<td>Advanced Evolutionary Ecology</td>
</tr>
<tr>
<td>BIOL 596*</td>
<td>Advanced Experimental Design</td>
</tr>
<tr>
<td>BIOL 597*</td>
<td>Advanced Biostatistics</td>
</tr>
<tr>
<td>BIOL 598*</td>
<td>Advanced Design and Statistics</td>
</tr>
<tr>
<td>MATH 324</td>
<td>Statistics</td>
</tr>
</tbody>
</table>

Stream 2: Physical Biology (25 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 301</td>
<td>Cell and Molecular Biology Laboratory</td>
</tr>
<tr>
<td>BIOL 319/PHYS 319</td>
<td>Introduction to Biophysics</td>
</tr>
<tr>
<td>PHYS 333</td>
<td>Thermal and Statistical Physics</td>
</tr>
<tr>
<td>OR PHYS 362</td>
<td>Statistical Mechanics</td>
</tr>
</tbody>
</table>

300-level complementary courses: 6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 300</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td>BIOL 303</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIOL 306</td>
<td>Neural Basis of Behavior</td>
</tr>
<tr>
<td>BIOL 309</td>
<td>Mathematical Models in Biology</td>
</tr>
<tr>
<td>BIOL 313</td>
<td>Eukaryotic Cell Biology</td>
</tr>
</tbody>
</table>

500-level complementary courses: 6 credits from the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 518</td>
<td>Advanced Topics in Cell Biology</td>
</tr>
<tr>
<td>BIOL 520</td>
<td>Gene Activity in Development</td>
</tr>
<tr>
<td>BIOL 524</td>
<td>Topics in Molecular Biology</td>
</tr>
<tr>
<td>BIOL 530</td>
<td>Advances in Neuroethology</td>
</tr>
<tr>
<td>BIOL 551</td>
<td>Principles of Cellular Control</td>
</tr>
<tr>
<td>BIOL 588</td>
<td>Advances in Molecular/Cellular Neurobiology</td>
</tr>
<tr>
<td>PHYS 519</td>
<td>Advanced Biophysics</td>
</tr>
</tbody>
</table>

Complementary Courses

Theoretical Ecology and Evolutionary Biology, and Physical Biology streams (9 crs)

9 credits from the following:

Recommendations for either Theoretical Ecology and Evolutionary Biology stream OR the Physical Biology stream

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>COMP 206</td>
<td>Introduction to Software Systems</td>
</tr>
<tr>
<td>COMP 250</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>COMP 251</td>
<td>Algorithms and Data Structures</td>
</tr>
<tr>
<td>COMP 350</td>
<td>Numerical Computing</td>
</tr>
<tr>
<td>OR MATH 317</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>COMP 364</td>
<td>Computer Tools or Life Sciences</td>
</tr>
<tr>
<td>MATH 314</td>
<td>Advanced Calculus</td>
</tr>
<tr>
<td>MATH 319</td>
<td>Introduction to Partial Differential Equations</td>
</tr>
<tr>
<td>MATH 326</td>
<td>Nonlinear Dynamics and Chaos</td>
</tr>
<tr>
<td>MATH 327</td>
<td>Matrix Numerical Analysis</td>
</tr>
<tr>
<td>MATH 348</td>
<td>Topics in Geometry</td>
</tr>
<tr>
<td>MATH 437</td>
<td>Mathematical Models in Biology</td>
</tr>
<tr>
<td>MATH 447</td>
<td>Introduction to Stochastic Processes</td>
</tr>
</tbody>
</table>

Recommendations for the Physical Biology Stream

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEN 310</td>
<td>Introduction to Biomolecular Engineering</td>
</tr>
<tr>
<td>BIEN 320</td>
<td>Molecular, Cellular and Tissue Biomechanics</td>
</tr>
<tr>
<td>BIEN 340</td>
<td>Transport Processes in Biological Systems</td>
</tr>
<tr>
<td>BIEN 510</td>
<td>Nanoparticles in the Medical Sciences</td>
</tr>
<tr>
<td>BIEN 530</td>
<td>Imaging and Bioanalytical Instrumentation</td>
</tr>
</tbody>
</table>
CHEM 222 Introductory Organic Chemistry 2
MATH 324 Statistics
PHYS 242 Electricity and Magnetism
PHYS 257 Experimental Methods 1
PHYS 342 Majors Electromagnetic Waves
PHYS 413 Physical Basis of Physiology
PHYS 434 Optics
PHYS 519 Advanced Biophysics
PHYS 446 Majors Quantum Physics
PHYS 534 Nanoscience and Nanotechnology

PHYS 242 is required for PHYS 342 and PHYS 434

Recommendations for Theoretical Ecology and Evolutionary Biology Stream

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 204</td>
<td>Principles of Statistics 2</td>
</tr>
<tr>
<td>MATH 242</td>
<td>Analysis 1</td>
</tr>
<tr>
<td>MATH 324</td>
<td>Statistics</td>
</tr>
<tr>
<td>MATH 340</td>
<td>Discrete Structures 2</td>
</tr>
<tr>
<td>MATH 423</td>
<td>Regression and Analysis of Variance</td>
</tr>
<tr>
<td>MATH 524</td>
<td>Nonparametric Statistics</td>
</tr>
<tr>
<td>MATH 525</td>
<td>Sampling Theory and Applications</td>
</tr>
<tr>
<td>PHYS 333*</td>
<td>Thermal and Statistical Physics</td>
</tr>
</tbody>
</table>

PHYS 333 is now required for the Physical Biology Stream

JOINT MAJOR IN BIOLOGY AND MATHEMATICS (76 credits)

This program is built on a selection of mathematics and biology courses that recognizes mathematical biology as a field of research, with 3 streams within biology: Ecology and Evolutionary Ecology, Molecular Evolution, and Neurosciences.

Program coordinators: Frederic Guichard (Biology) and Axel Hundemer (Mathematics).

Advising notes for U0 students

It is highly recommended that freshman BIOL, CHEM, MATH, and PHYS courses be selected with an advisor to ensure they meet the core requirements of the program.

This program is recommended for U1 students achieving a CGPA of 3.2 or better; and entering CEGEP students with a Math/Science R-score of 28.0 or better

Revised Fall 2016

Required courses (34 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>Cell Biology and Metabolism or BIOC/ANAT 212</td>
</tr>
<tr>
<td>BIOL 215</td>
<td>Introduction to Ecology and Evolution</td>
</tr>
<tr>
<td>* CHEM 212</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>** Either ** COMP 202</td>
<td>Foundations of Programming</td>
</tr>
<tr>
<td>or ** COMP 250</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>MATH 222</td>
<td>Calculus 3</td>
</tr>
<tr>
<td>****MATH 223</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>** or ****MATH 247</td>
<td>Honours Applied Linear Algebra</td>
</tr>
<tr>
<td>MATH 242</td>
<td>Analysis 1</td>
</tr>
</tbody>
</table>

30
If a student has already taken CHEM 212 or its equivalent, the credits can be made up with a complementary course in consultation with the program coordinator.

Students who have sufficient knowledge in a programming language should take COMP 250 instead of COMP 202

Students may take either MATH 223 or MATH 247

Complementary Courses (42 credits)
For the 42 credits, students complete 24 credits of BIOL/NEUR/PHGY/PSYC courses including one of the three Streams (Ecology and Evolutionary Ecology, Molecular Evolution, Neurosciences) and 18 credits of MATH courses:

Math or Biology Research Course
Note: Students selecting a BIOL course count this toward their 24 credits of BIOL, NEUR, PHGY, PSYC courses while students selecting a MATH course count this toward their 18 credits of MATH courses.

3 credits from the following Math or Biology Research courses:

- BIOL 466 Independent Research Project 1
- BIOL 467 Independent Research Project 1
- MATH 410 Majors Project

Of the remaining complementary courses, at least 6 credits must be at the 400-level or above.

MATH Courses

15 credits (if MATH 410 was selected as research course) or 18 credits of MATH courses chosen from Sequence 1 or 2 and from "Remaining Math Courses" as follows:

SEQUENCE 1 Theory: 12 credits from the following courses

- MATH 314 Advanced Calculus
- MATH 317 Numerical analysis
- MATH 327 Matrix Numerical Analysis

or

- MATH 319 Introduction to Partial Differential Equations
- MATH 410 Majors Project

SEQUENCE 2 Statistics: 9 credits from the following:

- MATH 324 Statistics
- MATH 423 Regression and Analysis of Variance
- MATH 447 Intro. to Stochastic Processes

Remaining Math Courses
The remaining 3-9 credits of MATH courses may be chosen from any of the two preceding sequences and/or from the following list:

- MATH 204 Principles of Statistics 2
- MATH 340 Discrete Structures 2
- MATH 437 Mathematical Methods in Biology
- MATH 523 Generalized Linear Models
- MATH 524 Nonparametric Statistics
- MATH 525 Sampling Theory and Applications

BIOL, NEUR, PHGY, PHYS, PSYC courses

21 to 24 credits of BIOL, NEUR, PHGY, PHYS, PSYC courses including one of three Streams.

Note: Some courses in the Streams may have prerequisites.
Ecology and Evolutionary Ecology stream (at least 15 credits)

Required stream course

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 206</td>
<td>Methods in Biology of Organisms</td>
</tr>
</tbody>
</table>

Stream Complementary Courses

3 credits from the following field courses or any other field course, with permission

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 240</td>
<td>Montréal Flora</td>
</tr>
<tr>
<td>BIOL 331</td>
<td>Ecology/Behaviour field course</td>
</tr>
<tr>
<td>BIOL 334D1/D2</td>
<td>Applied Tropical Ecology</td>
</tr>
<tr>
<td>BIOL 432</td>
<td>Limnology</td>
</tr>
<tr>
<td>BIOL 573</td>
<td>Vertebrate Palaeontology Field Studies</td>
</tr>
</tbody>
</table>

At least 9 credits chosen from the following list, of which 6 credits must be at the 400-level or above

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 202</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>BIOL 205</td>
<td>Biology of Organisms</td>
</tr>
<tr>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>BIOL 305</td>
<td>Animal Diversity</td>
</tr>
<tr>
<td>BIOL 308</td>
<td>Ecological Dynamics</td>
</tr>
<tr>
<td>BIOL 310</td>
<td>Biodiversity & Ecosystems</td>
</tr>
<tr>
<td>BIOL 324</td>
<td>Ecological Genetics – requires BIOL 202</td>
</tr>
<tr>
<td>BIOL 434</td>
<td>Theoretical Ecology</td>
</tr>
<tr>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>BIOL 468</td>
<td>Independent Research Project 3</td>
</tr>
<tr>
<td>BIOL 509</td>
<td>Methods in Molecular Ecology</td>
</tr>
<tr>
<td>BIOL 569</td>
<td>Developmental Evolution</td>
</tr>
<tr>
<td>BIOL 594</td>
<td>Advanced Evolutionary Ecology</td>
</tr>
</tbody>
</table>

Molecular Evolution Stream (at least 16 credits)

Required stream courses (7 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 202</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>BIOL 301</td>
<td>Cell and Molecular Laboratory</td>
</tr>
</tbody>
</table>

Stream Complementary Courses

At least 9 credits chosen from the following list, of which 6 credits must be at the 400-level or above.

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 303</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>BIOL 313</td>
<td>Eukaryotic Cell Biology</td>
</tr>
<tr>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>BIOL 468</td>
<td>Independent Research Project 3</td>
</tr>
<tr>
<td>BIOL 592</td>
<td>Integrated Bioinformatics</td>
</tr>
<tr>
<td>BIOL 518</td>
<td>Advanced Topics in Cell Biology (requirements: see notes)</td>
</tr>
<tr>
<td>BIOL 569</td>
<td>Developmental Evolution</td>
</tr>
<tr>
<td>BIOL 572</td>
<td>Molecular Evolution</td>
</tr>
<tr>
<td>BIOL 592</td>
<td>Integrated Bioinformatics</td>
</tr>
</tbody>
</table>

Neurosciences stream (at least 15 credits)

Required stream courses (3 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 306</td>
<td>Neural Basis of Behaviour</td>
</tr>
</tbody>
</table>

Stream Complementary Courses (at least 12 credits) of which 6 credits must be at the 400-level or above

At least 12 credits selected from

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 320</td>
<td>Evolution of Brain and Behaviour</td>
</tr>
<tr>
<td>BIOL 389</td>
<td>Laboratory in Neurobiology</td>
</tr>
<tr>
<td>BIOL 466</td>
<td>Independent Research Project 1</td>
</tr>
<tr>
<td>BIOL 467</td>
<td>Independent Research Project 2</td>
</tr>
<tr>
<td>BIOL 468</td>
<td>Independent Research Project 3</td>
</tr>
</tbody>
</table>
Remaining BIOL, NEUR, PHGY, PSYC
For the remaining BIOL/NEUR/PHGY/PSYC complementary course credits, if any, students may top up their credits to the necessary 21-24 credits with any course listed in the above streams in Biology or any other course in Biology with the approval of the program coordinator.

Notes:
Program coordinators: Frederic Guichard (Biology), Axel Hundemer (Mathematics).

JOINT MAJOR IN COMPUTER SCIENCE AND BIOLOGY (69 - 73 CREDITS)

This program will train students in the fundamentals of Biology and will give them the computational and mathematical skills needed to manage, analyze and model large biological datasets. Two integrative features of the program are a three-credit joint independent studies course (COMP 401), and a one-credit seminar (COMP 499).

Students may complete this program with a maximum of 73 credits or a minimum of 69 credits. This depends upon the student’s choice of required courses and whether or not the student is exempt from taking COMP 202.

Program Prerequisites:
To ensure they meet the core requirements of the program, it is highly recommended that the following courses be selected by U0 students: BIOL 111-112, CHEM 110-120, MATH 133, MATH 140-141 or MATH 150-151, PHYS 101-102 or PHYS 131-142. Note that MATH 150-151 provides equivalence for required course MATH 222. It is also advisable to take COMP 202 during U0, if possible.

Revised Fall 2016

Required Courses (48-52 credits)

Required MATH and STATISTICS Courses:
12 credits from:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 222</td>
<td>Calculus 3*</td>
</tr>
<tr>
<td>MATH 223</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MATH 323</td>
<td>Probability</td>
</tr>
<tr>
<td>MATH 324</td>
<td>Statistics</td>
</tr>
</tbody>
</table>

*Students with CEGEP-level credit for the equivalent of MATH 222 and/ or CHEM 212 may not take these courses at McGill and should replace them with elective courses to satisfy the total credit requirement of their degree.
Required COMPUTER SCIENCE Courses:
12-16 credits from:

<table>
<thead>
<tr>
<th></th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>COMP 202</td>
<td>Foundations of Programming**</td>
</tr>
<tr>
<td>3</td>
<td>COMP 206</td>
<td>Introduction to Software Systems</td>
</tr>
<tr>
<td>3</td>
<td>COMP 250</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>3</td>
<td>COMP 251</td>
<td>Data Structure and Algorithms***</td>
</tr>
<tr>
<td>3</td>
<td>COMP 462</td>
<td>Computational Biology Methods****</td>
</tr>
<tr>
<td>4</td>
<td>or COMP 561</td>
<td>Computational Biology Methods & Research****</td>
</tr>
</tbody>
</table>

Students who have sufficient knowledge in a programming language are not required to take COMP 202
***Students are advised to take MATH 240 before COMP 251 (MATH 240 is in the list of Complementaries below)**
****Students take either COMP 462 or COMP 561

Required BIOL and/or CHEM Courses:

20 credits from:

<table>
<thead>
<tr>
<th></th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BIOL 200</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 201</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 202</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 215</td>
<td>Introduction to Ecology and Evolution</td>
</tr>
<tr>
<td>4</td>
<td>BIOL 301</td>
<td>Cell and Molecular Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>CHEM 212</td>
<td>Introductory Organic Chemistry 1*</td>
</tr>
</tbody>
</table>

Required Joint Courses:

4 credits from:

<table>
<thead>
<tr>
<th></th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>COMP 401</td>
<td>Project in Biology & Computer Science</td>
</tr>
<tr>
<td>1</td>
<td>COMP 499</td>
<td>Undergraduate Bioinformatics Seminar</td>
</tr>
</tbody>
</table>

Complementary Courses (21 credits)

At least 21 credits from the following blocks with the following requirements:

- At least 9 credits from each of the following two blocks
- At least 9 credits at the 400-level or above.
- At least 3 credits at the 400-level or above from each block

Computer Science Block

<table>
<thead>
<tr>
<th></th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>COMP 273</td>
<td>Introduction to Computer Systems</td>
</tr>
<tr>
<td>3</td>
<td>COMP 302</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>3</td>
<td>COMP 303</td>
<td>Software Development</td>
</tr>
<tr>
<td>2</td>
<td>COMP 307</td>
<td>Principles of Web Development</td>
</tr>
<tr>
<td>3</td>
<td>COMP 310</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>1</td>
<td>COMP 322</td>
<td>Introduction to C++</td>
</tr>
<tr>
<td>3</td>
<td>COMP 330</td>
<td>Theory of Computation</td>
</tr>
<tr>
<td>3</td>
<td>COMP 350</td>
<td>Numerical Computing</td>
</tr>
<tr>
<td>3</td>
<td>COMP 360</td>
<td>Algorithm Design Techniques</td>
</tr>
<tr>
<td>6</td>
<td>COMP 361 D1/D2</td>
<td>Software Engineering Project</td>
</tr>
<tr>
<td>3</td>
<td>MATH 240</td>
<td>Discrete Structures 1</td>
</tr>
</tbody>
</table>

All COMP courses at the 400-level or above (except 400, 401, 462, 499 and 561)
Students must take both COMP 361D1 and COMP 361D2

Biology Block

<table>
<thead>
<tr>
<th></th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BIOL 300</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 303</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>BIOL 306</td>
<td>Neural Basis of Behaviour</td>
<td></td>
</tr>
<tr>
<td>BIOL 308</td>
<td>Ecological Dynamics</td>
<td></td>
</tr>
<tr>
<td>BIOL 309</td>
<td>Mathematical Models in Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 310</td>
<td>Biodiversity and Ecosystems</td>
<td></td>
</tr>
<tr>
<td>BIOL 313</td>
<td>Eukaryotic Cell Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 314</td>
<td>Molecular Biology of Oncogenes</td>
<td></td>
</tr>
<tr>
<td>BIOL 316</td>
<td>Biomembranes and Organelles</td>
<td></td>
</tr>
<tr>
<td>BIOL 319</td>
<td>Introduction to Biophysics</td>
<td></td>
</tr>
<tr>
<td>BIOL 320</td>
<td>Evolution of Brain and Behaviour</td>
<td></td>
</tr>
<tr>
<td>BIOL 370</td>
<td>Human Genetics Applied</td>
<td></td>
</tr>
<tr>
<td>BIOL 389</td>
<td>Laboratory in Neurobiology</td>
<td></td>
</tr>
<tr>
<td>BIOL 395</td>
<td>Quantitative Biology Seminar 1</td>
<td></td>
</tr>
<tr>
<td>BIOL 416</td>
<td>Genetics of Mammalian Development</td>
<td></td>
</tr>
<tr>
<td>BIOL 434</td>
<td>Theoretical Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 435</td>
<td>Natural Selection</td>
<td></td>
</tr>
<tr>
<td>BIOL 495</td>
<td>Quantitative Biology Seminar 2</td>
<td></td>
</tr>
<tr>
<td>BIOL 509</td>
<td>Methods in Molecular Ecology</td>
<td></td>
</tr>
<tr>
<td>BIOL 514</td>
<td>Neurobiology of Learning and Memory</td>
<td></td>
</tr>
<tr>
<td>BIOL 518</td>
<td>Advanced Topics in Cell Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 520</td>
<td>Gene Activity in Development</td>
<td></td>
</tr>
<tr>
<td>BIOL 524</td>
<td>Topics in Molecular Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL 530</td>
<td>Advances in Neuroethology</td>
<td></td>
</tr>
<tr>
<td>BIOL 532</td>
<td>Developmental Neurobiology Seminar</td>
<td></td>
</tr>
<tr>
<td>BIOL 546</td>
<td>Genetics of Model Systems</td>
<td></td>
</tr>
<tr>
<td>BIOL 551</td>
<td>Molecular Biology: Cell Cycle</td>
<td></td>
</tr>
<tr>
<td>BIOL 568</td>
<td>Topics of the Human Genome</td>
<td></td>
</tr>
<tr>
<td>BIOL 569</td>
<td>Developmental Evolution</td>
<td></td>
</tr>
<tr>
<td>BIOL 575</td>
<td>Human Biochemical Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 580</td>
<td>Genetic Approaches to Neural Systems</td>
<td></td>
</tr>
<tr>
<td>BIOL 588</td>
<td>Advances in Molecular/Cellular Neurobiology</td>
<td></td>
</tr>
<tr>
<td>NEUR 310</td>
<td>Cellular Neurobiology</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
Program coordinators: Mathieu Blanchette, Bettina Kemme, Derek Ruths (Computer Science) and Jackie Vogel (Biology)

JOINT HONORS IN COMPUTER SCIENCE & BIOLOGY (75-79 credits)
Projected Start Date Fall 2016

This honours program will train students in the fundamentals of biology - with a focus on molecular biology - and will give them computational and mathematical skills needed to manage, analyze, and model large biological datasets. Two integrative features of the program are a six-credit joint independent studies course, and a one-credit seminar. Compared to its non-Honours counterpart, the Honours program requires additional research credits and a larger number of advanced courses. Students must have and maintain a minimum CPA of 3.5. Students may complete this program with a maximum of 79 credits or a minimum of 75 credits. This depends upon the student’s choice of required courses and whether or not the student is exempt from taking COMP 202.

Program prerequisites: To ensure they meet the core requirements of the program, it is highly recommended that the following courses be selected by U0 students: BIOL 111-112, CHEM 110-120, MATH 133, MATH 140-141 or MATH 150-151, PHYS 101-102 or PHYS 131-142. Note that MATH 150-151 provides equivalence for required course MATH 222. It is also advisable to take COMP 202 during U0 if possible. It is highly recommended that Freshman BIOL, CHEM, MATH, and PHYS courses be selected with an adviser to ensure they meet the core requirements of the COMP-BIO program.
*Note that students with CEGEP-level credits for the equivalents of MATH 222 and CHEM 212 may not take these courses at McGill and should replace them with elective courses to satisfy the total credit requirement for their degree.

Required Courses (54-58 credits)

Required MATH and STATISTICS Courses

15 credits from:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>MATH 222</td>
<td>Calculus 3*</td>
</tr>
<tr>
<td>3</td>
<td>MATH 223</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>3</td>
<td>MATH 240</td>
<td>Discrete Structures</td>
</tr>
<tr>
<td>3</td>
<td>MATH 323</td>
<td>Probability</td>
</tr>
<tr>
<td>3</td>
<td>MATH 324</td>
<td>Statistics</td>
</tr>
</tbody>
</table>

Required COMP SCI Courses

12-16 credits from:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>COMP 202</td>
<td>Foundations of Programming**</td>
</tr>
<tr>
<td>3</td>
<td>COMP 206</td>
<td>Introduction to Software Systems</td>
</tr>
<tr>
<td>3</td>
<td>COMP 250</td>
<td>Introduction to Computer Science</td>
</tr>
<tr>
<td>3</td>
<td>COMP 252</td>
<td>Honours Algorithms and Data Structures</td>
</tr>
<tr>
<td>3</td>
<td>COMP 462</td>
<td>Computational Biology Methods***</td>
</tr>
<tr>
<td>4</td>
<td>COMP 561</td>
<td>Computational Biology Methods and Research***</td>
</tr>
</tbody>
</table>

**Students who have sufficient knowledge in a programming language are not required to take COMP 202

***Students take either COMP 462 or COMP 561

Required BIOL and/or CHEM Courses

20 credits from:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BIOL 200</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 201</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 202</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>3</td>
<td>BIOL 215</td>
<td>Introduction to Ecology and Evolution</td>
</tr>
<tr>
<td>4</td>
<td>BIOL 301</td>
<td>Cell and Molecular Laboratory</td>
</tr>
<tr>
<td>4</td>
<td>CHEM 212</td>
<td>Introductory Organic Chemistry 1*</td>
</tr>
</tbody>
</table>

Required Joint Courses

7 credits from:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>COMP 402D1</td>
<td>Honours Project in Comp. Sci. & Biology</td>
</tr>
<tr>
<td>3</td>
<td>COMP 402 D2</td>
<td>Honours Project in Comp. Sci. & Biology</td>
</tr>
<tr>
<td>1</td>
<td>COMP 499</td>
<td>Undergraduate Bioinformatics Seminar</td>
</tr>
</tbody>
</table>

Complementary Courses (21 credits)

At least 21 credits selected from the following blocks with the following two requirements:

1. At least 9 credits from each of the two blocks
2. At least 9 credits at the 400-level or above.
3. At least 3 credits at the 400-level or above from each block

Computer Science Block

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>COMP 273</td>
<td>Introduction to Computer Systems</td>
</tr>
<tr>
<td>3</td>
<td>COMP 302</td>
<td>Programming Languages and Paradigms</td>
</tr>
<tr>
<td>3</td>
<td>COMP 303</td>
<td>Software Development</td>
</tr>
<tr>
<td>2</td>
<td>COMP 307</td>
<td>Principles of Web Development</td>
</tr>
<tr>
<td>3</td>
<td>COMP 310</td>
<td>Operating Systems</td>
</tr>
</tbody>
</table>

36
COMP 322
Introduction to C++

COMP 330
Theory of Computation

COMP 350
Numerical Computing

COMP 360
Algorithm Design Techniques

COMP 361 D1/D2
Software Engineering Project*

MATH 240
Discrete Structures

Note: All COMP courses at the 400 level or above (except COMP 400, 401/402D1/D2, 462, 499, 561)

*Students must take both COMP 361D1 and COMP 361D2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 300</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td>BIOL 303</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIOL 304</td>
<td>Evolution</td>
</tr>
<tr>
<td>BIOL 306</td>
<td>Neural Basis of Behaviour</td>
</tr>
<tr>
<td>BIOL 308</td>
<td>Ecological Dynamics</td>
</tr>
<tr>
<td>BIOL 309</td>
<td>Mathematical Models in Biology</td>
</tr>
<tr>
<td>BIOL 310</td>
<td>Biodiversity and Ecosystems</td>
</tr>
<tr>
<td>BIOL 313</td>
<td>Eukaryotic Cell Biology</td>
</tr>
<tr>
<td>BIOL 314</td>
<td>Molecular Biology of Oncogenes</td>
</tr>
<tr>
<td>BIOL 316</td>
<td>Biomembranes and Organelles</td>
</tr>
<tr>
<td>BIOL 319</td>
<td>Introduction to Biophysics</td>
</tr>
<tr>
<td>BIOL 320</td>
<td>Evolution of Brain and Behaviour</td>
</tr>
<tr>
<td>BIOL 370</td>
<td>Human Genetics Applied</td>
</tr>
<tr>
<td>BIOL 389</td>
<td>Laboratory in Neurobiology</td>
</tr>
<tr>
<td>BIOL 395</td>
<td>Quantitative Biology Seminar 1</td>
</tr>
<tr>
<td>BIOL 416</td>
<td>Genetics of Mammalian Development</td>
</tr>
<tr>
<td>BIOL 434</td>
<td>Theoretical Ecology</td>
</tr>
<tr>
<td>BIOL 435</td>
<td>Natural Selection</td>
</tr>
<tr>
<td>BIOL 495</td>
<td>Quantitative Biology Seminar 2</td>
</tr>
<tr>
<td>BIOL 509</td>
<td>Methods in Molecular Ecology</td>
</tr>
<tr>
<td>BIOL 514</td>
<td>Neurobiology of Learning and Memory</td>
</tr>
<tr>
<td>BIOL 518</td>
<td>Advanced Topics in Cell Biology</td>
</tr>
<tr>
<td>BIOL 520</td>
<td>Gene Activity in Development</td>
</tr>
<tr>
<td>BIOL 524</td>
<td>Topics in Molecular Biology</td>
</tr>
<tr>
<td>BIOL 530</td>
<td>Advances in Neuroethology</td>
</tr>
<tr>
<td>BIOL 532</td>
<td>Developmental Neurobiology Seminar</td>
</tr>
<tr>
<td>BIOL 546</td>
<td>Genetics of Model Systems</td>
</tr>
<tr>
<td>BIOL 551</td>
<td>Molecular Biology: Cell Cycle</td>
</tr>
<tr>
<td>BIOL 568</td>
<td>Topics of the Human Genome</td>
</tr>
<tr>
<td>BIOL 569</td>
<td>Developmental Evolution</td>
</tr>
<tr>
<td>BIOL 575</td>
<td>Human Biochemical Genetics</td>
</tr>
<tr>
<td>BIOL 580</td>
<td>Genetic Approaches to Neural Systems</td>
</tr>
<tr>
<td>BIOL 588</td>
<td>Advances in Molecular/Cellular Neurobiology</td>
</tr>
<tr>
<td>NEUR 310</td>
<td>Cellular Neurobiology</td>
</tr>
</tbody>
</table>

MINOR PROGRAMS DIRECTED BY THE BIOLOGY DEPT

MINOR IN BIOLOGY (24 OR 25 CREDITS)

The Minor in Biology may be taken in conjunction with any primary program in the Faculty of Science (other than programs offered by the Department of Biology). Students are advised to consult the Undergraduate Advisor in Biology as early as possible (preferably during their U1 year), in order to plan their course selection.

(Nancy Nelson, Rm. W3/25, Stewart Biology Building, 398-4109 E-Mail: nancy.nelson@mcgill.ca)

Six credits of overlap are usually allowed between the Minor and the main program.
Required Courses (15 credits)

- BIOL 200 (3) Molecular Biology
- BIOL 201 (3) Cell Biology and Metabolism
- BIOL 202 (3) Basic Genetics
- BIOL 205 (3) Biology of Organisms
- BIOL 215 (3) Introduction to Ecology and Evolution

Complementary Courses (9 or 10 credits)

To include

- CHEM 212* (4) Introductory Organic Chemistry 1

Plus an additional 2 courses from the Biology Department's course offerings, at the 300 level or above.

*Students who have already taken CHEM 212 or its equivalent will choose another appropriate course, to be approved by the advisor.

MINOR IN BIOTECHNOLOGY: (24 CREDITS)

Biotechnology, the science of understanding, selecting and promoting useful organisms and specific gene products for commercial and therapeutic purposes, is the success story of this generation. It demands a broad comprehension of biology and engineering as well as detailed knowledge of at least one basic subject such as molecular genetics, protein chemistry, microbiology, or chemical engineering.

The Minor in Biotechnology is offered by the Faculties of Engineering and of Science and students combine the Minor with the regular departmental Major (or Honours) program. The Minor emphasizes an area relevant to biotechnology which is complementary to the main program.

Students should identify their interest in the Biotechnology Minor to their departmental academic advisor and to the Program Supervisor of the Minor and at the time of registration for the U2 year, should declare their intent to embark on the Minor. Before registering for the Minor and with the agreement of the Academic Advisor, students must submit their course list to the Program Supervisor who will certify that the student’s complete program conforms to the requirements for the Minor. Students should ensure that they will have fulfilled the prerequisite requirements for the courses selected.

Additional information on the program may be obtained from

Program Director: Prof. Elias Georges, Inst. of Parasitology, Macdonald Campus 398-8137/elas.georges@mcgill.ca.

Program Advisor: Nancy Nelson, 398-4109/nancy.nelson@mcgill.ca.

Engineering students should consult the Student Centre, Frank Dawson Adams Room 22

General Regulations

To obtain the Minor in Biotechnology, students must:

a) Satisfy the requirements both for the departmental program and for the Minor
b) Complete 24 credits, 18 of which must be exclusively for the Minor program
c) Obtain a grade of C or better in all courses presented for the Minor.
Required Courses (15 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>Cell Biology & Metabolism</td>
</tr>
<tr>
<td>or BIOC 212</td>
<td>Molecular Mechanisms of Cell Function</td>
</tr>
<tr>
<td>BIOL 202</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>BIOT 505</td>
<td>Selected Topics in Biotechnology</td>
</tr>
<tr>
<td>MIMM 211.</td>
<td>Introductory Microbiology</td>
</tr>
</tbody>
</table>

Complementary Courses (9 credits)

9 credits selected from courses outside the department of the student's main program. Students may select three courses from one of the lists below, or may choose three alternate courses with the advisor's approval. In the case of more than 6 credits of potentially overlapping courses, students add additional complementary courses to replace the credits.

Biomedicine
- ANAT 541: Cell and Molecular Biology of Aging
- EXMD 504: Biology of Cancer
- PATH 500: Human Disease

Chemical Engineering
- CHEE 200: Introduction to Chemical Engineering
- CHEE 204: Chemical Manufacturing Processes
- CHEE 474: Biochemical Engineering

Chemistry
- CHEM 382: Organic Chemistry: Natural Products
- CHEM 502: Advanced Bio-organic Chemistry
- CHEM 552: Physical Organic Chemistry

Immunology
- ANAT 261: Introduction to Dynamic Histology
- BIOC 503: Immunochemistry
- MIMM 214: Introductory Immunology: Elements of Immunity
- MIMM 414: Advanced Immunology
- PHGY 513: Cellular Immunology

Management
- ECON 208: Microeconomic Analysis and Applications
- MGCR 211: Introduction to Financial Accounting
- MGCR 341: Finance 1
- MGCR 352: Marketing Management 1
- MGCR 472: Operations Management

(These courses should be in addition to courses selected as credit towards a Management Minor.)

Microbiology
- MIMM 323: Microbial Physiology
- MIMM 324: Fundamental Virology
- MIMM 413: Parasitology
- MIMM 465: Bacterial Pathogenesis
- MIMM 466: Viral Pathogenesis

Molecular Biology (Biology)
- BIOL 300: Molecular Biology of the Gene
- BIOL 314: Molecular Biology of Oncogenes
- BIOL 520: Gene Activity in Development
- BIOL 524: Topics in Molecular Biology
- BIOL 551: Molecular Biology: Cell Cycle

Molecular Biology (Biochemistry)
- BIOC 311: Metabolic Biochemistry
- BIOC 312: Biochemistry of Macromolecules
- BIOC 450: Protein Structure and Function
MINOR CONCENTRATION IN SCIENCE FOR ARTS STUDENTS (18 CREDITS)

Note: This program is NOT open to Science students, but its required course, BIOL 210, is open – as an elective.

Freshman students interested in this Minor Concentration should seek advice at the earliest opportunity, by contacting the Program Advisor. In general, students should declare their intention to obtain this Minor Concentration during their U1 year and consult the Program Advisor regarding approval of courses to meet the requirements.

This Minor Concentration is administered by the Department of Biology. For more information contact the program advisor, Ms. Nancy Nelson in the Biology Department, Room W3/25, Stewart Biology Building, 514-398-4109; or the Program Director, Professor Louis Lefebvre, Room W6/10, Stewart Biology Building, 514-398-6457.

The Minor welcomes students who transfer from the faculty of science to the faculty of arts and want to include a coherent set of their previous science courses, but they should be aware that doing so in U3 cannot exempt them from completing all requirements of the program.

REQUIRED COURSES (3 CREDITS)

BIOL 210 (3) Perspectives of Science (usually taken in U1)

COMPLEMENTARY COURSES (15 CREDITS)

15 credits are taken in one of the disciplinary areas given below. Where suggested courses have prerequisites at the 200 or 300 level associated with them, credit for the associated prerequisites may also be counted as part of the 15 credits

Courses at the 100 level cannot be counted towards the Minor Concentration.

With the prior written approval of the Program Advisor, an appropriate alternative set of courses may be substituted.
DISCIPLINARY AREAS

Atmospheric & Oceanic Sciences
Prerequisites which cannot be counted towards the Minor Concentration: MATH 140 and MATH 141 or equivalents; PHYS 101 or PHYS 131 and PHYS 102 or PHYS 142, or equivalents recommended

ATOC 214 (3) Introduction: Physics of the Atmosphere
ATOC 215 (3) Oceans, Weather and Climate
ATOC 309 (3) Weather Radars and Satellites
ATOC 315 (3) Thermodynamics and Convection
MATH 222 (3) Calculus 3

Biochemistry
Prerequisites which cannot be counted towards the Minor Concentration: BIOL 111 and BIOL 112 plus CHEM 110 and CHEM 120 or their equivalents.

15 credits taken from the following courses and their associated 200- or 300-level prerequisites

ANAT 262 (3) Introductory Molecular and Cell Biology
BIOC 212 (3) Molecular Mechanisms of Cell Function
BIOL 200 (3) Molecular Biology
CHEM 212 (4) Introductory Organic Chemistry 1
Students who have completed CHEM 212 and CHEM 222 or their equivalents may take one or both of the following:
BIOC 311 (3) Metabolic Biochemistry
BIOC 312 (3) Biochemistry of Macromolecules

Biology
Students interested in Biology can choose between two streams. One is oriented toward cell and molecular biology and leads to upper level courses in developmental biology, human genetics, molecular biology, or allied fields. The other is oriented more toward organismal biology and leads to upper level courses in biodiversity, ecology, neurobiology, behaviour, or conservation biology. See Ms. Nancy Nelson in the Biology Department, Room W3/25, Stewart Biology Building, to arrange a counselling session on choice of courses above the 200 level.

Prerequisites which cannot be counted towards the Minor Concentration: BIOL 111 and BIOL 112 plus CHEM 110 and CHEM 120 or their equivalents; in addition, PHYS 101 or 131 for the Organismal Stream, and MATH 140 and PHYS 102 or 142 if taking BIOL 306.

A) Cell and molecular stream: Note: CHEM 212 or its equivalent is a co-requisite for BIOL 200

BIOL 200 (3) Molecular Biology
BIOL 201 (3) Cell Biology and Metabolism
BIOL 202 (3) Basic Genetics
CHEM 212 (4) Introductory Organic Chemistry 1

Plus a selected subset of these or related upper level courses:

BIOL 300 (3) Molecular Biology of the Gene
BIOL 303 (3) Developmental Biology
BIOL 313 (3) Eukaryotic Cell Biology
BIOL 314 (3) Molecular Biology of Oncogenes
BIOL 370 (3) Human Genetics Applied

B) Organismal stream: Note: CHEM 212 or its equivalent is a co-requisite for BIOL 200

BIOL 200 (3) Molecular Biology
BIOL 201 (3) Cell Biology and Metabolism
Plus a selected subset of these or related upper level courses:

- BIOL 304: Evolution
- BIOL 305: Animal Diversity
- BIOL 306: Neural Basis of Behaviour
- BIOL 307: Behavioural Ecology
- BIOL 308: Ecological Dynamics
- BIOL 310: Biodiversity and Ecosystems
- BIOL 465: Conservation Biology

Chemistry

Prerequisites which cannot be counted towards the Minor Concentration: BIOL 112 and CHEM 110 and CHEM 120 or their equivalents; MATH 140 and PHYS 101 or PHYS 131 and PHYS 102 or PHYS 142 or their equivalents if taking CHEM 334.

The Department also strongly encourages students to take one or more courses involving a laboratory because the science of chemistry is rooted in laboratory experience.

Students select 15 credits from the following courses and their associated prerequisites:

Note that CHEM 212 or its equivalent is a prerequisite to all 200-level or higher courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 212</td>
<td>4</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
<tr>
<td>CHEM 222</td>
<td>4</td>
<td>Introductory Organic Chemistry 2</td>
</tr>
<tr>
<td>CHEM 267</td>
<td>3</td>
<td>Introductory Chemical Analysis</td>
</tr>
<tr>
<td>CHEM 281</td>
<td>3</td>
<td>Inorganic Chemistry 1</td>
</tr>
<tr>
<td>CHEM 302</td>
<td>3</td>
<td>Introductory Organic Chemistry 3</td>
</tr>
<tr>
<td>CHEM 334</td>
<td>3</td>
<td>Advanced Materials</td>
</tr>
<tr>
<td>CHEM 381</td>
<td>3</td>
<td>Inorganic Chemistry 2</td>
</tr>
</tbody>
</table>

One of:

- CHEM 203: Survey of Physical Chemistry
- CHEM 204: Physical Chemistry/Biological Sciences 1

Computer Science

Please see calendar listing for Bachelor of Arts Minors in Computer Science

Earth & Planetary Sciences

A combination of EPSC 201 or EPSC 233, together with EPSC 210 and EPSC 212 provide grounding in Earth and Planetary Sciences and preparation for more specialized courses. Students should meet with an EPSC departmental advisor prior to selecting their courses, as some 200-level courses have specific prerequisites. Prerequisites which cannot be counted toward the Minor concentration: CHEM 110 and CHEM 120, and MATH 140 or equivalents.

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPSC 201</td>
<td>3</td>
<td>Understanding Planet Earth*</td>
</tr>
<tr>
<td>EPSC 203</td>
<td>3</td>
<td>Structural Geology</td>
</tr>
<tr>
<td>EPSC 210</td>
<td>3</td>
<td>Introductory Mineralogy</td>
</tr>
<tr>
<td>EPSC 212</td>
<td>3</td>
<td>Introductory Petrology</td>
</tr>
<tr>
<td>EPSC 220</td>
<td>3</td>
<td>Principles of Geochemistry</td>
</tr>
<tr>
<td>EPSC 231</td>
<td>3</td>
<td>Field School 1</td>
</tr>
<tr>
<td>EPSC 233</td>
<td>3</td>
<td>Earth and Life History*</td>
</tr>
<tr>
<td>EPSC 320</td>
<td>3</td>
<td>Elementary Earth Physics</td>
</tr>
<tr>
<td>EPSC 334</td>
<td>3</td>
<td>Invertebrate Palaeontology</td>
</tr>
<tr>
<td>EPSC 425</td>
<td>3</td>
<td>Sediments to Sequences</td>
</tr>
</tbody>
</table>

Note: students may take either EPSC 201 or EPSC 233
Geography

Students in any Minor or Major Concentration or Honours Program in Geography cannot choose this disciplinary area. Geography advisers recommend including some preparation in chemistry, statistics and calculus for study in this area even if formal prerequisites are not in place. A selection of courses should be taken from:

- GEOG 203 (3) Environmental Systems
- GEOG 205 (3) Global Change: Past, Present and Future
- GEOG 272 (3) Earth’s Changing Surface
- GEOG 305 (3) Soils and Environment
- GEOG 321 (3) Climatic Environments
- GEOG 322 (3) Environmental Hydrology
- GEOG 350 (3) Ecological Biogeography
- GEOG 372 (3) Running Water Environments

Mathematics and Statistics

Students in any Minor or Major Concentration or Honours Program in Mathematics and Statistics cannot choose this disciplinary area. Prerequisites which cannot be counted toward the Minor: MATH 133, MATH 140 and MATH 141 or equivalents.

Suggested courses:

- MATH 203 (3) Principles of Statistics 1
- MATH 204 (3) Principles of Statistics 2
- MATH 222 (3) Calculus 3
- MATH 233 (3) Linear Algebra
- MATH 338 (3) History and Philosophy of Mathematics

Microbiology and Immunology

Prerequisites which cannot be counted towards the Minor Concentration: BIOL 111 and BIOL 112, CHEM 110 and 120 or their equivalents.

Students select the 15 credits from the following courses and their associated prerequisites:

Note: CHEM 212 or its equivalent is prerequisite, or co-requisite, to these courses.

- BIOL 200 (3) Molecular Biology
- BIOL 201 (3) Cell Biology and Metabolism (or ANAT/BIOC 212)
- CHEM 212 (4) Introductory Organic Chemistry 1
- MIMM 211 (3) Introductory Microbiology
- MIMM 214 (3) Introductory Immunology: Elements of Immunity
- MIMM 323 (3) Microbial Physiology
- MIMM 324 (3) Fundamental Virology

Pathology

Prerequisites which cannot be counted towards the Minor Concentration: BIOL 111 and BIOL 112 plus CHEM 110 and CHEM 120, MATH 140 and PHYS 101 or PHYS 131 and PHYS 102 or PHYS142, or their equivalents. PATH 300, together with its associate prerequisites, is well suited to students with an interest in medicine.

- BIOL 200 (3) Molecular Biology
- BIOL 201 (3) Cell Biology and Metabolism (or ANAT/ BIOC 212)
- CHEM 212 (4) Introductory Organic Chemistry 1
- PATH 300 (3) Human Disease
PHGY 209 (3) Mammalian Physiology 1
PHGY 210 (3) Mammalian Physiology 2

Physics

Prerequisites which cannot be counted towards the Minor Concentration: PHYS 131, PHYS 142, MATH 140 MATH 141, MATH 222 or their equivalents.
Honours courses may be substituted for their Major equivalents only with the permission of the Department.

PHYS 214 (3) Introductory Astrophysics
PHYS 224 (3) Physics of Music
PHYS 230 (3) Dynamics of Simple Systems
PHYS 232 (3) Heat and Waves
PHYS 241 (3) Signal Processing
PHYS 242 (2) Electricity and Magnetism
PHYS 257 (3) Experimental Methods 1
PHYS 258 (3) Experimental Methods 2

Physiology

Prerequisites which cannot be counted towards the Minor Concentration: BIOL 111 and BIOL 112, CHEM 110 and CHEM 120, MATH 140, PHYS 101 or PHYS 131 and PHYS 102 or PHYS 142, or their equivalents.
Students should select:

BIOL 200 (3) Molecular Biology
BIOL 201 (3) Cell Biology and Metabolism (or BIOC/ANAT 212)
CHEM 212 (4) Introductory Organic Chemistry 1
PHGY 209 (3) Mammalian Physiology 1 and
PHGY 210 (3) Mammalian Physiology 2

and if credits permit, one or more of these intermediate-level courses:

PHGY 311 (3) Channels, Synapses & Hormones
PHGY 312 (3) Respiratory, Renal, & Cardiovascular Physiology
PHGY 313 (3) Blood, Gastrointestinal, & Immune Systems Physiology
PHGY 314 (3) Integrative Neuroscience

Psychology

Students in any Minor or Major Concentration or Honours Program in Psychology cannot choose this disciplinary area.
Prerequisites which cannot be counted towards the Minor Concentration: PSYC 100

Students in the Minor Concentration 15 credits of Psychology selected as follows:

PSYC 204 (3) Introduction to Psychological Statistics 1

Plus 6 credits from the following core courses:

PSYC 211 (3) Introductory Behavioural Neuroscience
PSYC 212 (3) Perception
PSYC 213 (3) Cognition
PSYC 215 (3) Social Psychology

Plus 6 credits Psychology courses at the 300 level or higher (excluding PSYC 305).
ADDITIONAL MINOR PROGRAMS FOR BIOLOGY STUDENTS

MINOR IN NEUROSCIENCE (25 CREDITS)

This Minor is intended to provide students with a basic understanding of how the nervous system functions. The minor is composed of 24-25 credits: 9 required and 15-16 complementary. For the 15-16 complementary credits, at least 12-13 must be from outside the student’s home department and at least 6 of the 12-13 must be at the 400 or 500 level. All course selections for the Minor must be approved by the program’s advisor, Ryan Bouma (email: ryan.bouma@mcgill.ca; Office: Dawson Hall, Rm. 405). Note 1: A maximum of 6-7 credits can be counted for both the student’s primary program and for the Minor in Neuroscience.

Required Courses (9 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>Molecular Biology</td>
<td>3</td>
</tr>
<tr>
<td>NSCI 200</td>
<td>Introduction to Neuroscience 1</td>
<td>3</td>
</tr>
<tr>
<td>NSCI 201</td>
<td>Introduction to Neuroscience 2</td>
<td>3</td>
</tr>
</tbody>
</table>

Complementary Courses (16 credits)

15-16 credits selected as follows:
- At least 12-13 credits must be from outside the student’s home department.
- At least 6 of the 12-13 credits have to be at the 400- or 500-level.

0-10 credits from the following list of 200 and 300 level courses:
*Students may select ANAT 212 or BIOC 212 or BIOL 201
**Students may select either BIOL 306 or PHGY 314

Note 2: Since CHEM 212 is a prerequisite/corequisite for NSCI 200 and BIOL 200, students must take CHEM 212 if they have not yet done so.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT 212*</td>
<td>Molecular Mechanisms of Cell Functions</td>
<td>3</td>
</tr>
<tr>
<td>BIOC 212*</td>
<td>Molecular Mechanisms of Cell Functions</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 201*</td>
<td>Cell Biology and Metabolism</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 202</td>
<td>Basic Genetics</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 300</td>
<td>Molecular Biology of the Gene</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 306**</td>
<td>Neural Basis of Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 320</td>
<td>The Evolution of Brain and Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 389</td>
<td>Laboratory in Neurobiology</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>Introductory Organic Chemistry 1</td>
<td>4</td>
</tr>
<tr>
<td>LING 390</td>
<td>Neuroscience of Language</td>
<td>3</td>
</tr>
<tr>
<td>NEUR 310</td>
<td>Cellular Neurobiology</td>
<td>3</td>
</tr>
<tr>
<td>PHGY 311</td>
<td>Channels, Synapses and Hormones</td>
<td>3</td>
</tr>
<tr>
<td>PHGY 314**</td>
<td>Integrative Neuroscience</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 302</td>
<td>The Psychology of Pain</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 311</td>
<td>Human Cognition and the Brain</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 315</td>
<td>Computational Psychology</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 317</td>
<td>Genes and Behaviour</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 318</td>
<td>Behavioural Neuroscience 2</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 342</td>
<td>Hormones and Behaviour</td>
<td>3</td>
</tr>
</tbody>
</table>

6-15 credits from the following list of 400 and 500 level courses
***Students may select either BIOL 514 or PSYC 514

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 514***</td>
<td>Neurobiology of Learning and Memory</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 530</td>
<td>Advances in Neuroethology</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 532</td>
<td>Developmental Neurobiology Seminar</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 580</td>
<td>Genetic Approaches to Neural Systems</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 588</td>
<td>Advances in Molecular/Cellular Neurobiology</td>
<td>3</td>
</tr>
</tbody>
</table>
PHGY Courses
- PHGY 425 (3) Analyzing Physiological Systems
- PHGY 451 (3) Advanced Neurophysiology
- PHGY 520 (3) Ion Channels
- PHGY 524 (3) Chronobiology
- PHGY 556 (3) Topics in Systems Neuroscience

PSYC Courses
- PSYC 410 (3) Special Topics in Neuropsychology
- PSYC 427 (3) Sensorimotor Behaviour
- PSYC 444 (3) Sleep Mechanisms and Behaviour
- PSYC 470 (3) Memory and Brain
- PSYC 501 (3) Auditory Perception
- PSYC 506 (3) Cognitive Neuroscience of attention
- PSYC 514*** (3) Neurobiology of Learning and Memory
- PSYC 522 (3) Neurochemistry and Behaviour
- PSYC 526 (3) Advances in Visual Perception
- PSYC 532 (3) Cognitive Science
- PSYT 455 (3) Neurochemistry
- PSYT 500 (3) Advances: Neurobiology of Mental Disorders
- PSYT 505 (3) Neurobiology of Schizophrenia

MINOR IN NATURAL HISTORY (24 credits)

The Minor Natural History involves the exploration of the natural world via specimen-based studies, object-oriented investigations and field studies. Museum collections are used to provide hands-on experience with real objects and specimens. The required course brings students to the Redpath Museum and other McGill natural science museums and exposes them to natural history methodologies and the value of specimen-based studies. Complementary course lists are drawn from a variety of disciplines to emphasize breadth and integration with the inclusion of specimen- or object-based courses and field courses in zoology, botany, and earth and environmental sciences. To ensure breadth, students are required to choose courses from among these lists. A compulsory field course component rounds out the program.

Required Course (3 credits)
- REDM 400 (3) Science and Museums

Complementary Courses (21 credits)
Students select 21 credits from among four course lists: A (Zoology), B (Botany), C (Earth and Environmental Sciences), and D (Field Courses) with the following specifications.
- At least 3 credits from each of Lists A, B, and C.
- At least 3 credits from List D.

No more than 3 credits from any one list may be at the 200 level.

Note: Students may take up to a maximum of 9 credits of courses outside the Faculties of Arts and of Science.

List A: Zoology
- * Note: BIOL 205 and BIOL 215 may be applied to either List A or List B.
- ** Note: Students may take either ENTO 330 or BIOL 350 as these courses have similar content.

- AEBI 211 (3) Organisms 2
- ANTH 312 (3) Zooarchaeology
- BIOL 205 (3) Biology of Organisms*
- BIOL 215 (3) Introduction to Ecology and Evolution*
- BIOL 305 (3) Animal Diversity
- BIOL 350 (3) Insect Biology and Control**
- BIOL 352 (3) Vertebrate Evolution
- BIOL 418 (3) Freshwater Invertebrate Ecology
- BIOL 427 (3) Herpetology
- BIOL 463 (3) Mammalian Evolution
ENTO 330 (3) Insect Biology**
ENTO 440 (3) Insect Diversity
ENTO 535 (3) Aquatic Entomology
EPSC 354 (3) Invertebrate Paleontology
WILD 307 (3) Natural History of Vertebrates
WILD 350 (3) Mammalogy
WILD 420 (3) Ornithology

** List B: Botany **

AEBI 210 (3) Organisms 1
BIOL 205 (3) Biology of Organisms
BIOL 215 (3) Introduction to Ecology and Evolution
BIOL 240 (3) Monteregean Flora
BIOL 355 (3) Trees: Ecology & Evolution
PLNT 304 (3) Biology of Fungi
PLNT 353 (3) Plant Structure and Function
PLNT 358 (3) Flowering Plant Diversity
PLNT 460 (3) Plant Ecology

** List C: Earth and Environmental Sciences **

BIOL 540 (3) Ecology of Species Invasions
ENVR 200 (3) The Global Environment
ENVR 202 (3) The Evolving Earth
EPSC 210 (3) Introductory Mineralogy
EPSC 233 (3) Earth and Life History
ESYS 200 (3) Earth System Processes
ESYS 300 (3) Investigating the Earth System
GEOG 203 (3) Environmental Systems
GEOG 272 (3) Earth’s Changing Surface
GEOG 470 (3) Wetlands
GEOG 550 (3) Historical Ecology Techniques

** List D: Field Studies **

Note that students may take either of the cross-listed courses NRSC 405 and REDM 405, but not both. Students may also take other field courses with the permission of the Program Advisor, Rowan Barrett (rowan.barrett@mcgill.ca)

BIOL 331 (3) Ecology/Behaviour Field Course
BIOL 334 (3) Applied Tropical Ecology
BIOL 335 (3) Marine Mammals
BIOL 573 (3) Vertebrate Palaeontology Field Studies
ENTO 340 (3) Field Entomology
EPSC 231 (3) Field School 1
NRSC 405 (3) Natural History of East Africa
REDM 405 (3) Natural History of East Africa
WILD 475 (3) Desert Ecology

CONCENTRATION ADVISORS IN BIOLOGY

The advisor in Biology is Nancy Nelson (in W3/25) and she should be consulted about your program on a regular basis. For further information about your chosen major (such as graduate schools, research and job opportunities etc.), the following professors can also be consulted.
I MAJOR PROGRAM CONCENTRATIONS

1. MOLECULAR GENETICS AND DEVELOPMENT
 Cell Biology – Brouhard, Dankort, Schoeck, Vogel, Western, Zetka, Zheng
 Developmental Biology - Abouheif, Dent, Lasko, Moon, Nilson, Roy, Schoeck, Western
 Mammalian Genetics – Dankort, Hekimi, Palmour
 Molecular Genetics - Dankort, Dhindsa, Hekimi, Lasko, Moon, Schoeck, Western, Zetka, Zheng

2. NEUROBIOLOGY - Dent, Hendricks, Krahe, Reader, Sakata, Watt, Woolley

3. HUMAN GENETICS – Rosenblatt, Palmour

4. EVOLUTIONARY BIOLOGY - Abouheif, Bell, Bureau, Davies, Green, Hendry, Larsson, Schoen

5. BIOLOGICAL DIVERSITY AND SYSTEMATICS - Abouheif, Bell, Davies, Gonzalez, Green, Hendry, Larsson

6. BEHAVIOUR - Krahe, Lefebvre, Reader, Sakata, Woolley

7. GENERAL AND APPLIED ECOLOGY - Chapman, Fussmann, Gonzalez, Gregory-Eaves, Guichard, Potvin, Schoen

8. AQUATIC ECOLOGY – Chapman, Fussmann, Gregory-Eaves, Guichard, Price

9. MARINE BIOLOGY – Guichard, Price

10. CONSERVATION BIOLOGY – Chapman, Gonzalez, Green, Potvin

II QUANTITATIVE BIOLOGY OPTION

Advisors – Biology: Guichard, Vogel; Mathematics: Hundemer; Physics: François; Comp Sci: Blanchette, Ruths, Waldispuhl; Honours QB - Vogel

III HONOURS PROGRAM

Honours Program in Biology, Advisor – Brouhard

IV INDEPENDENT STUDIES

Advisor – TBA

V JOINT MAJORS

BIOLOGY & MATHEMATICS - Guichard, Hundemer

COMPUTER SCIENCE & BIOLOGY - Vogel, Blanchette

VI MINORS

1. MINOR IN BIOLOGY: Nelson

2. BIOTECHNOLOGY: BSc students please see Nancy Nelson for advising
 BENG students please see Engineering Student Affairs for advising

3. MINOR IN NEUROSCIENCE: Krahe

4. SCIENCE FOR ARTS STUDENTS: Lefebvre

THE FOLLOWING PROFESSORS WILL BE ON SABBATICAL

Graham Bell July 1/16 – December 31/16
Jonathan Davies September 1/16 – August 31/17
David Green September 1/16 – December 31/16
Joseph Dent September 1/16 – August 31/17
Siegfried Hekimi July 1/16 – December 31/16
Neil Price September 1/16 – August 31/17
Virginie Millien September 1/16 – August 31/17
The B.A. & Sc. is an interdisciplinary degree intended for students who want to pursue simultaneously a program offered by Arts and one offered by Science. The overall objective is to provide a broad education spanning substantive areas in the two faculties so that students can learn diverse content and varied methods of inquiry. Students should meet regularly with each of their program advisors. They should consult their Faculty of Science advisor to ensure they complete degree requirements, including the Freshman program and integrative credits.

Advising Note: Freshman students should be aware that PHYS 101 and/or PHYS 102 are required for some of the courses in the major and minor concentrations in Biology.

BIOLOGY MAJOR CONCENTRATIONS

Biology – Cell/Molecular Option (36 credits)

The Major Concentration in Biology, Cell/Molecular Option, which is restricted to students in the BA. & Sc., is a planned sequence of courses designed to permit a degree of specialization in cell/molecular biology.

Required Courses* (29 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>3</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>3</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>BIOL 202</td>
<td>3</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>BIOL 205</td>
<td>3</td>
<td>Biology of Organisms</td>
</tr>
<tr>
<td>BIOL 215</td>
<td>3</td>
<td>Introduction to Ecology and Evolution</td>
</tr>
<tr>
<td>BIOL 300</td>
<td>3</td>
<td>Molecular Biology of the Gene</td>
</tr>
<tr>
<td>BIOL 301</td>
<td>4</td>
<td>Cell and Molecular Laboratory</td>
</tr>
<tr>
<td>BIOL 303</td>
<td>3</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>4</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
</tbody>
</table>

*Required courses taken at CEGEP or elsewhere that are not credited toward the B.A. & Sc. must be replaced by 3-credit courses from the Complementary Course List. Regardless of the substitution, students must take at least 36 credits in this program.

Complementary Courses (7 credits minimum)

At least 7 credits selected from

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 306</td>
<td>3</td>
<td>Neural Basis of Behaviour</td>
</tr>
<tr>
<td>BIOL 313</td>
<td>3</td>
<td>Eukaryotic Cell Biology</td>
</tr>
<tr>
<td>BIOL 314</td>
<td>3</td>
<td>Molecular Biology of Oncogenes</td>
</tr>
<tr>
<td>BIOL 316</td>
<td>3</td>
<td>Biomembranes and Organelles</td>
</tr>
<tr>
<td>BIOL 370</td>
<td>3</td>
<td>Human Genetics Applied</td>
</tr>
<tr>
<td>BIOL 373</td>
<td>3</td>
<td>Biometry</td>
</tr>
<tr>
<td>BIOL 413</td>
<td>1</td>
<td>Directed Reading</td>
</tr>
<tr>
<td>BIOL 568</td>
<td>3</td>
<td>Topics on the Human Genome</td>
</tr>
<tr>
<td>BIOL 575</td>
<td>3</td>
<td>Human Biochemical Genetics</td>
</tr>
</tbody>
</table>

Or other appropriate course at the 300-level or higher with permission of the Biology Advisor

Biology – Organismal Option (37 credits)

The Major Concentration in Biology, Organismal Option, which is restricted to students in the B.A. & Sc., is a planned sequence of courses designed to permit a degree of specialization in organismal biology. Students may complete this program with a minimum of 36 credits or a maximum of 37 credits depending on whether they have already taken CHEM 212 or its equivalent, and on their choice of complementary courses.
Required Courses* (28 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>(3)</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>(3)</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>BIOL 202</td>
<td>(3)</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>BIOL 205</td>
<td>(3)</td>
<td>Biology of Organisms</td>
</tr>
<tr>
<td>BIOL 206</td>
<td>(3)</td>
<td>Methods in Biology of Organisms</td>
</tr>
<tr>
<td>BIOL 215</td>
<td>(3)</td>
<td>Introduction to Ecology and Evolution</td>
</tr>
<tr>
<td>BIOL 304</td>
<td>(3)</td>
<td>Evolution</td>
</tr>
<tr>
<td>BIOL 308</td>
<td>(3)</td>
<td>Ecological Dynamics</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>(4)</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
</tbody>
</table>

*Required courses taken at CEGEP or elsewhere that are not credited toward the B.A. & Sc. must be replaced by 3-credit courses from the Complementary Course List. Regardless of the substitution, students must take at least 36 credits in this program.

Complementary Courses (9 credits)

9 credits selected from

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 303</td>
<td>(3)</td>
<td>Developmental Biology</td>
</tr>
<tr>
<td>BIOL 305</td>
<td>(3)</td>
<td>Animal Diversity</td>
</tr>
<tr>
<td>BIOL 306</td>
<td>(3)</td>
<td>Neural Basis of Behaviour</td>
</tr>
<tr>
<td>BIOL 307</td>
<td>(3)</td>
<td>Behavioural Ecology</td>
</tr>
<tr>
<td>BIOL 310</td>
<td>(3)</td>
<td>Biodiversity and Ecosystems</td>
</tr>
<tr>
<td>BIOL 331</td>
<td>(3)</td>
<td>Ecology/Behaviour Field Course</td>
</tr>
<tr>
<td>BIOL 350</td>
<td>(3)</td>
<td>Insect Biology and Control</td>
</tr>
<tr>
<td>BIOL 352</td>
<td>(3)</td>
<td>Vertebrate Evolution</td>
</tr>
<tr>
<td>BIOL 373</td>
<td>(3)</td>
<td>Biometry</td>
</tr>
<tr>
<td>BIOL 427</td>
<td>(3)</td>
<td>Herpetology</td>
</tr>
<tr>
<td>BIOL 418</td>
<td>(3)</td>
<td>Freshwater Invertebrate Ecology</td>
</tr>
<tr>
<td>BIOL 435</td>
<td>(3)</td>
<td>Natural Selection</td>
</tr>
<tr>
<td>BIOL 441</td>
<td>(3)</td>
<td>Biological Oceanography</td>
</tr>
<tr>
<td>BIOL 463</td>
<td>(3)</td>
<td>Mammalian Evolution</td>
</tr>
<tr>
<td>BIOL 465</td>
<td>(3)</td>
<td>Conservation Biology</td>
</tr>
</tbody>
</table>

Or other appropriate course at the 300-level or higher with permission of the Biology Advisor

Biology – Cell/Molecular Option (18 or 19 credits)

The Minor Concentration in Biology (Cell/Molecular Option), which is restricted to students in the B.A. & Sc., is a sequence of courses designed to yield a broad introduction to Cell and Molecular Biology.

Required Courses (9 or 13 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>(3)</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>(3)</td>
<td>Cell Biology and Metabolism</td>
</tr>
<tr>
<td>BIOL 202</td>
<td>(3)</td>
<td>Basic Genetics</td>
</tr>
<tr>
<td>CHEM 212</td>
<td>(4)</td>
<td>Introductory Organic Chemistry 1</td>
</tr>
</tbody>
</table>

Complementary Courses (9 or 6 credits, depending on whether CHEM 212 has been taken prior to entering McGill)

Plus 2 or 3 appropriate courses at the 300-level or higher with permission of the Biology advisor.

Biology – Organismal Option (18 or 19 credits)

Required Courses (12 or 16 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 200</td>
<td>(3)</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>BIOL 201</td>
<td>(3)</td>
<td>Cell Biology and Metabolism</td>
</tr>
</tbody>
</table>
THE CREDIT WEIGHT/WORKLOAD POLICY

The Science Faculty has adopted the following policy on Credit Weight/Workloads:

"The credit assigned to a particular course should reflect the amount of effort it demands of the student. For the average student, one credit will represent an average of three hours total work per week over one semester - including a combination of lecture hours, other contact hours, such as laboratory periods, tutorials, and problem periods, as well as personal study time."

e.g. BIOL 112 : 3 credits (2-3-4) signifies a three credit course with 2h lecture, 3h lab and 4h personal study time per week.

Definition

Lecture Hours
Required class meetings.

Other Contact Hours
e.g. Labs; Conferences; Tutorials; Seminars

Personal Study Time
This refers to unscheduled, personal study time which will vary from student to student, but is a measure of the instructor's expectation of the work required for an average student to get an average course grade.
UNDERGRADUATE COURSES FOR THE FALL TERM 2016
(courses underlined are not offered this term)

<table>
<thead>
<tr>
<th>Course Number</th>
<th>Course Title</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Organismal Biology Laboratory</td>
<td>R. Krahe/A. Hendry/R. Dhindsa</td>
</tr>
<tr>
<td>111</td>
<td>Principles: Organismal Biology</td>
<td>R. Krahe/A. Hendry/R. Dhindsa</td>
</tr>
<tr>
<td>115</td>
<td>Essential Biology</td>
<td>S. Woolley/J. Vogel</td>
</tr>
<tr>
<td>200</td>
<td>Molecular Biology</td>
<td>T. Bureau/R. Roy/ M. Zetka/TBA</td>
</tr>
<tr>
<td>206</td>
<td>Methods in Biology of Organisms</td>
<td>M. Cristescu & Staff</td>
</tr>
<tr>
<td>210</td>
<td>Perspectives of Science</td>
<td>L. Lefebvre</td>
</tr>
<tr>
<td>215</td>
<td>Introduction to Ecology & Evolution</td>
<td>C. Potvin/E. Abouheif</td>
</tr>
<tr>
<td>300</td>
<td>Molecular Biology of the Gene</td>
<td>F. Schoeck/N. Moon</td>
</tr>
<tr>
<td>301</td>
<td>Cell and Molecular Laboratory</td>
<td>H. Zheng/R. Reyes Lamothe/P. Harrison</td>
</tr>
<tr>
<td>304</td>
<td>Evolution</td>
<td>H. Larsson/E. Abouheif/A. Hendry</td>
</tr>
<tr>
<td>306</td>
<td>Neural Basis of Behaviour</td>
<td>A. Watt /J. Sakata</td>
</tr>
<tr>
<td>308</td>
<td>Ecological Dynamics</td>
<td>F. Guichard</td>
</tr>
<tr>
<td>309</td>
<td>Mathematical Models in Biology</td>
<td>L. Glass</td>
</tr>
<tr>
<td>314</td>
<td>Molecular Biology of Oncogenes</td>
<td>L. Majewska/D. Dankort & Staff</td>
</tr>
<tr>
<td>316</td>
<td>Biomembranes and Organelles</td>
<td>H. Zheng/A. Watt</td>
</tr>
<tr>
<td>331</td>
<td>Ecology/Behaviour Field Course</td>
<td>G. Fussmann and staff</td>
</tr>
<tr>
<td>350</td>
<td>Insect Biology and Control</td>
<td>G. Dunphy</td>
</tr>
<tr>
<td>370</td>
<td>Human Genetics Applied</td>
<td>R. Palmour & Staff</td>
</tr>
<tr>
<td>373</td>
<td>Biometry</td>
<td>B. Leung</td>
</tr>
<tr>
<td>377</td>
<td>Independent Reading Project</td>
<td>Staff</td>
</tr>
<tr>
<td>385</td>
<td>Plant Growth and Development</td>
<td>R. Dhindsa</td>
</tr>
<tr>
<td>395</td>
<td>Quantitative Biology Seminar 1</td>
<td>J. Vogel/F. Guichard</td>
</tr>
<tr>
<td>396</td>
<td>Undergraduate Research Project</td>
<td>Staff</td>
</tr>
<tr>
<td>413</td>
<td>Directed Reading</td>
<td>Staff</td>
</tr>
<tr>
<td>418</td>
<td>Freshwater Invertebrate Ecology</td>
<td>A. Ricciardi</td>
</tr>
<tr>
<td>427</td>
<td>Herpetology</td>
<td>D. Green</td>
</tr>
<tr>
<td>432</td>
<td>Limnology</td>
<td>G. Fussmann/I. Gregory-Eaves</td>
</tr>
<tr>
<td>436</td>
<td>Evolution and Society</td>
<td>E. Abouheif/S. Reader</td>
</tr>
<tr>
<td>465</td>
<td>Conservation Biology</td>
<td>L. Chapman/F. Guichard</td>
</tr>
<tr>
<td>466</td>
<td>Independent Research Project 1</td>
<td>Staff</td>
</tr>
<tr>
<td>467</td>
<td>Independent Research Project 2</td>
<td>Staff</td>
</tr>
<tr>
<td>468</td>
<td>Independent Research Project 3</td>
<td>Staff</td>
</tr>
<tr>
<td>495</td>
<td>Quantitative Biology Seminar 2</td>
<td>J. Vogel/F. Guichard</td>
</tr>
<tr>
<td>507</td>
<td>Animal Communication</td>
<td>J. Sakata//R. Krahe</td>
</tr>
<tr>
<td>510</td>
<td>Advances in Community Ecology</td>
<td>A. Gonzalez</td>
</tr>
<tr>
<td>514</td>
<td>Neurobiology of Learning & Memory</td>
<td>K. Nader</td>
</tr>
<tr>
<td>524</td>
<td>Topics in Molecular Biology</td>
<td>H. Clarke/D. Dankort</td>
</tr>
<tr>
<td>544</td>
<td>Genetic Basis of Life Span</td>
<td>S. Hekimi</td>
</tr>
<tr>
<td>546</td>
<td>Genetics of Model Systems</td>
<td>S. Hekimi</td>
</tr>
<tr>
<td>570</td>
<td>Advanced Seminar in Evolution</td>
<td>Staff</td>
</tr>
<tr>
<td>580</td>
<td>Genetic Approaches to Neural Systems</td>
<td>M. Hendricks/A. Watt</td>
</tr>
<tr>
<td>588</td>
<td>Molecular/ Cellular Neurobiology</td>
<td>S. Carbonetto/K. Hastings</td>
</tr>
<tr>
<td>592</td>
<td>Integrated Bioinformatics</td>
<td>P. Harrison</td>
</tr>
<tr>
<td>594</td>
<td>Advanced Evolutionary Ecology</td>
<td>A. Hendry</td>
</tr>
</tbody>
</table>

Note: All classes have limited capacity. Register early
UNDERGRADUATE COURSES FOR THE WINTER TERM 2017
(courses underlined are not offered this term)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>Cell and Molecular Biology Methods</td>
<td>F. Schoeck/H. Zheng/P. Harrison</td>
</tr>
<tr>
<td>112</td>
<td>Cell and Molecular Biology</td>
<td>F. Schoeck/H. Zheng/P. Harrison</td>
</tr>
<tr>
<td>201</td>
<td>Basic Genetics</td>
<td>G. Brouhard</td>
</tr>
<tr>
<td>202</td>
<td>Cell Biology and Metabolism</td>
<td>D. Schoen/N. Moon/L. Nilson</td>
</tr>
<tr>
<td>205</td>
<td>Biology of Organisms</td>
<td>R. Dhindsa</td>
</tr>
<tr>
<td>301</td>
<td>Cell and Molecular Laboratory</td>
<td>H. Zheng/R. Reyes-Lamothe/P. Harrison</td>
</tr>
<tr>
<td>303</td>
<td>Developmental Biology</td>
<td>M. Hendricks/D. Dufort/Y. Rao</td>
</tr>
<tr>
<td>305</td>
<td>Animal Diversity</td>
<td>H. Larsson/D. Green/R. Barrett/A. Hendry/A. Ricciardi</td>
</tr>
<tr>
<td>307</td>
<td>Behavioural Ecology</td>
<td>S. Reader</td>
</tr>
<tr>
<td>310</td>
<td>Biodiversity and Ecosystems</td>
<td>A. Hendry/F. Guichard/I. Gregory-Eaves</td>
</tr>
<tr>
<td>313</td>
<td>Eukaryotic Cell Biology</td>
<td>M. Zetka/TBA</td>
</tr>
<tr>
<td>319</td>
<td>Introduction to Biophysics</td>
<td>P. Wiseman (Physics Dept)</td>
</tr>
<tr>
<td>320</td>
<td>Evolution of Brain & Behaviour</td>
<td>S. Woolley/J. Sakata</td>
</tr>
<tr>
<td>342</td>
<td>Contemporary Topics in Aquatic Ecology</td>
<td>I. Gregory-Eaves/L. Chapman</td>
</tr>
<tr>
<td>352</td>
<td>Vertebrate Evolution: Dinosaurs & Mammals</td>
<td>H. Larsson/V. Millien</td>
</tr>
<tr>
<td>377</td>
<td>Independent Reading Project</td>
<td>Staff</td>
</tr>
<tr>
<td>389</td>
<td>Laboratory in Neurobiology</td>
<td>A. Watt/M. Hendricks/R. Krahe</td>
</tr>
<tr>
<td>396</td>
<td>Undergraduate Research Project</td>
<td>Staff</td>
</tr>
<tr>
<td>413</td>
<td>Directed Reading</td>
<td>Staff</td>
</tr>
<tr>
<td>416</td>
<td>Genetics of Mammalian Development</td>
<td>T. Taketo/D. Dufort</td>
</tr>
<tr>
<td>428</td>
<td>Biological Diversity in Africa</td>
<td>TBA</td>
</tr>
<tr>
<td>429</td>
<td>East African Ecology</td>
<td>L. Chapman</td>
</tr>
<tr>
<td>434</td>
<td>Theoretical Ecology</td>
<td>F. Guichard</td>
</tr>
<tr>
<td>441</td>
<td>Biological Oceanography</td>
<td>N. Price</td>
</tr>
<tr>
<td>451</td>
<td>Research in Ecology and Development in Africa*</td>
<td>L. Chapman</td>
</tr>
<tr>
<td>463</td>
<td>Mammalian Evolution</td>
<td>V. Millien</td>
</tr>
<tr>
<td>468</td>
<td>Independent Research Project 1</td>
<td>Staff</td>
</tr>
<tr>
<td>467</td>
<td>Independent Research Project 2</td>
<td>Staff</td>
</tr>
<tr>
<td>468</td>
<td>Independent Research Project 3</td>
<td>Staff</td>
</tr>
<tr>
<td>509</td>
<td>Methods in Molecular Ecology</td>
<td>M. Cristescu/D. Schoen</td>
</tr>
<tr>
<td>515</td>
<td>Advances in Aquatic Ecology</td>
<td>J. Gregory-Eaves</td>
</tr>
<tr>
<td>518</td>
<td>Advanced Topics in Cell Biology</td>
<td>R. Reyes-Lamothe/P. Harrison</td>
</tr>
<tr>
<td>520</td>
<td>Gene Activity in Development</td>
<td>R. Roy</td>
</tr>
<tr>
<td>530</td>
<td>Advances in Neuroethology</td>
<td>S. Woolley/R. Krahe</td>
</tr>
<tr>
<td>532</td>
<td>Developmental Neurobiology Seminar</td>
<td>D. Van Meyel & Staff</td>
</tr>
<tr>
<td>540</td>
<td>Ecology of Species Invasions</td>
<td>A. Ricciardi</td>
</tr>
<tr>
<td>551</td>
<td>Principles of Cellular Control</td>
<td>J. Vogel</td>
</tr>
<tr>
<td>553</td>
<td>Neotropical Environment</td>
<td>C. Potvin</td>
</tr>
<tr>
<td>568</td>
<td>Topics of the Human Genome</td>
<td>R. Slim & Staff</td>
</tr>
<tr>
<td>569</td>
<td>Developmental Evolution</td>
<td>H. Larsson/E. Abouheif</td>
</tr>
<tr>
<td>570</td>
<td>Advanced Seminar in Evolution</td>
<td>Staff</td>
</tr>
<tr>
<td>575</td>
<td>Human Biochemical Genetics</td>
<td>N. Braverman & Staff</td>
</tr>
<tr>
<td>596</td>
<td>Advanced Experimental Design</td>
<td>J. Sakata</td>
</tr>
<tr>
<td>597</td>
<td>Advanced Biostatistics</td>
<td>J. Sakata</td>
</tr>
<tr>
<td>598</td>
<td>Advanced Design & Statistics</td>
<td>J. Sakata</td>
</tr>
</tbody>
</table>

*Offered as NRSC 451 in 201701

Note: All classes have limited capacity. Register early.
UNDERGRADUATE COURSES SPANNING TWO SEMESTERS

334D1/D2 Applied Tropical Ecology F. Guichard/T. Bureau
468D1/D2 Independent Research Project 3 Staff
468D1/D2 Independent Research Project 4 Staff
479D1/D2 Honours Research Project 1 (fall and winter) Staff
480D1/D2 Honours Research Project 2 (fall and winter) Staff
499D1/D2 Honours Seminar in Biology (fall and winter) TBA

UNDERGRADUATE COURSES GIVEN IN SUMMER 2017

See McGill Summer Studies Calendar for dates

202 Basic Genetics D. Dankort/D. Hipfner
240 Montregeian Flora TBA
334D2 Applied Tropical Ecology F. Guichard/T. Bureau
335 Marine Mammals Huntsman Mar. Sci. Centre
377 Independent Reading Project Staff
413 Directed Reading Staff
466 Independent Research Project 1 Staff
467 Independent Research Project 2 Staff
468 Independent Research Project 3 Staff
573 Vertebrate Palaeontology Field Course H. Larsson
INTRODUCTORY
CEGEP-EQUIVALENT COURSES

BIOL 101 (Fall)
Organismal Biology Laboratory (1 credit)

Not open to students who have passed Biology Objective 00UK at CEGEP, or are taking, or have taken BIOL 111. Enrollment in this course is limited. Requires permission of the Biology Advisor

Instructors: R. Krahe (Coordinator) W3/23A 398-8065 rudiger.krahe@mcgill.ca
A. Hendry Redpath 398-4086x 00880 andrew.hendry@mcgill.ca
R. Dhindsa N3/11B 398-6423 raj.dhindsa@mcgill.ca
A. L'Heureux (Lab Coordinator) W4/9 398-6404 annemarie.lheureux@mcgill.ca

Restrictions: May only be taken by transfer students who have completed elsewhere the lecture component but not the laboratory of BIOL 111 and only with permission of the Biology Advisor. *Not open to students who have taken or are taking BIOL 111.

Content: The laboratory component of BIOL 111. Weekly, 3 hrs. Exploration of plant and animal morphology through the use of dissections, demonstrations, computer simulations and a research project.
Once registered, email annemarie.lheureux@mcgill.ca to be entered on BIOL 111 myCourses

Evaluation: Lab work 100% (including laboratory assignments, a lab research project and presentations).

Note: Attendance at first lab is mandatory to confirm registration in the course. Students who fail to attend will lose their place to others on the waiting list.

BIOL 102 (Winter)
Cell and Molecular Biology Methods (1 credit)

Not open to students who have passed Biology Objective 00XU at CEGEP, or are taking, or have taken BIOL 112. Enrollment in this course is limited. Requires permission of the Biology Advisor

Instructors: F. Schoeck (Coordinator) W5/6 398-6434 frieder.schoeck@mcgill.ca
H. Zheng N5/10 398-1328 hugo.zheng@mcgill.ca
P. Harrison W3/15 398-6420 paul.harrison@mcgill.ca
L’Heureux (Lab Coordinator) W4/9 398-6404 annemarie.lheureux@mcgill.ca

Restrictions: May be taken only by transfer students who have completed elsewhere the lecture component but not the laboratory of BIOL 112 and only with permission of the Biology Advisor. Not open to students who have taken or are taking BIOL 112.

Content: The laboratory component of BIOL 112.

Method: One three and a half hour lab per week.

Evaluation: Lab-related work 100% (including weekly pre-lab summaries and one laboratory presentation).

Note: Attendance at first lab is mandatory to confirm registration in the course. Students who fail to attend will lose their place to others on the waiting list.
Biol 111 (Fall)
Principles: Organismal Biology

Instructors:
R. Krahe (Coordinator) W3/23A 398-8065 rudiger.krahe@mcgill.ca
A. Hendry Redpath 398-4086s 00880 andrew.hendry@mcgill.ca
R. Dhindsa N3/11B 398-6423 raj.dhindsa@mcgill.ca
A. L’Heureux (Lab Coordinator) W4/9 398-6404 annemarie.lheureux@mcgill.ca

Workload: 3 credits (2-3-4)
Prerequisite: None.
Restrictions: Not open to students who have passed CEGEP Biology objective 00UK (301) or equivalent. Enrollment in this course is limited.

Content: This course introduces the basic principles of organismal biology through the study of representative groups of unicellular organisms, plants and animals. The principles include the origins of life, major events in the history of life, adaptations of organisms to particular environments, patterns of reproduction in plants and animals, form and function, physiology, locomotion, and behavior in animals and ecology.

1) PROKARYOTES, PROTISTS, AND FUNGI (4 lectures)
The origin of life, photosynthesis, cellular organization, protists, algae, mosses and fungi.

2) PLANT EVOLUTION STRUCTURE AND FUNCTION (4 lectures)
Adaptations to terrestrial life among plants, morphology, physiology, reproduction, and life history of ferns, gymnosperms and angiosperms.

3) ANIMAL EVOLUTION, STRUCTURE AND FUNCTION (13 lectures)
Early multicellular animals, tissue organization, muscular and skeletal system, body plans and symmetry, cephalization and nervous systems, adaptive radiations among mollusks, arthropods and chordates, respiration and respiratory systems, hormone function, circulatory systems, vertebrate evolution.

4) ECOLOGY AND EVOLUTION (3 or 4 lectures)
Ecology of populations, communities and ecosystems and global change. Mechanisms of evolution and speciation.

Readings: Biological Science, by Freeman, Harrington, Sharp, 2nd Canadian edition, 2014. The textbook is recommended to support your learning, but is not required reading for the exams.

Evaluation: Course work (midterm and final exams and clicker participation); lab work, including laboratory assignments, a lab research project with presentation.

Laboratory: Weekly, 3 hrs. Exploration of plant and animal morphology through the use of dissections, demonstrations, computer simulations and a research project.

Biol 111 and 112 serve as equivalents to required CEGEP courses and as pre-requisites to several key courses in Biology programs.

Attendance at first lab is mandatory to confirm registration in the course. Students who fail to attend will lose their place to others on the waiting list.
Attendance at all labs is mandatory.

Biol 112 (Winter)

56
Cell and Molecular Biology

Instructors:
F. Schoeck (Coordinator) W5/6 398-6434 frieder.schoeck@mcgill.ca
H. Zheng N5/10 398-1328 hugh.zheng@mcgill.ca
P. Harrison W3/15 398-6420 paul.harrison@mcgill.ca
A. L’Heureux (Lab Coordinator) W4/9 398-6404 annemarie.lheureux@mcgill.ca

Workload: 3 credits (2-3-4)

Prerequisite: None; however, a year of college general chemistry is strongly recommended. Enrolment in this course is limited.

Restrictions: AEBI 122. Not open to students who have passed Biology Objective 00XU (401) at CEGEP.

Content: The course provides an over-view of cell and molecular biology for all Science students and others intending to pursue further studies in the biological sciences. For several of the topics, the emphasis in the lectures is on the historical development of our current understanding. In a weekly one-hour conference, students will have the opportunity to discuss many of the important social issues that arise out of the discipline.

- Biomolecular Structures of Proteins, Nucleic acids, and Lipids
- Organization of the Cell
- Biomembrane Structure and Function
- Enzymes and Enzyme Catalysis
- Cell Energetics and Thermodynamics
- Respiration
- Photosynthesis
- Mitosis and Meiosis
- Mendelian Genetics
- DNA Replication
- Gene Transcription
- Protein Synthesis
- mRNA Splicing
- Control of Gene Expression
- Recombinant DNA Technology
- Genetic Disease

Readings: Biological Science, by Freeman, Harrington, Sharp, 2nd Canadian edition, 2014

Laboratory: Weekly, three hours

Evaluation: Lecture: multiple-choice midterm and final examinations.
Lab: weekly in-lab discussions and pre-lab summaries, one lab presentation.

Biol 111 and 112 serve as equivalents to required CEGEP courses and as pre-requisites to several key courses in Biology programs.

Attendance at first lab is mandatory to confirm registration in the course. Students who fail to attend will lose their place to others on the waiting list.
GENERAL AND ADVANCED COURSES IN BIOLOGY

BIOL 115 (Fall)
Essential Biology

Instructor: S. Woolley (Coordinator) N4/8 398-2324 sarah.woolley@mcgill.ca
J. Vogel Bellini 269 398-5880 jackie.vogel@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisite: Not open to those who have had BIOL 111 OR BIOL 112, or equivalents.

Content: In this course, we will learn about living organisms at a variety of levels, from molecules to populations. In particular, an effort will be made to relate the facts presented to pressing matters in our daily lives. For instance, when we discuss genetics we will talk about genetic engineering and its impact on society. This approach means that the course will tend to be topical, focusing on interesting observations and trying to explain them on the basis of biological knowledge. This is appropriate since Biology is an enormous field and it is impossible to cover it completely in a single course.

MODULE 1: SCIENCE & LIFE (Western)
Biology - Life & Diversity
Process of Science
Chemistry & Molecules of Life

MODULE 2: CELL BIOLOGY (Western)
Cell Function & Structure
Enzymes & Metabolism
Energy Flow & Photosynthesis
Dietary Energy & Cellular Respiration

MODULE 3: GENETICS, CANCER & BIOTECHNOLOGY (Western)
DNA Structure, Replication & Forensics
Genes, Proteins & Gene Regulation
Biotechnology
Mitosis, Cell Division, Mutation & Cancer
Meiosis, Sex & Chromosomal Abnormalities
Mendelian & Human Genetics

MODULE 4: NEUROSCIENCE & BEHAVIOUR (Woolley)
How does the brain work?
What lizard brains can teach us about mating
What rat brains can teach us about memory
What songbird brains can teach us about Parkinson’s disease

MODULE 5: EVOLUTION (Woolley)
Fundamentals of Evolution: Natural Selection, Sexual Selection, Drift & Speciation
Evolution and You: Bacteria and Viruses, Global Change, Human Evolution

(Note: subject to change; do not purchase before receiving course syllabus)

Method: Two 1.5 hour lectures per week.

Evaluation: Two one-hour midterm exams. Written assignments. Three-hour final exam.
BIOL 200 (Fall)
Molecular Biology

Instructors:
- T. Bureau (Coordinator) N4/1 398-6472 thomas.bureau@mcgill.ca
- R. Roy W5/17 398-6437 richard.roy@mcgill.ca
- M. Zetka (Coordinator) W5/2B 398-6445 monique.zetka@mcgill.ca
- K. Hastings MNI 398-1852 ken.hastings@mcgill.ca
- T. Bernhardt (Administrator) W3/25A 398-6416 torsten.bernhardt@mcgill.ca

Workload: 3 credits (3-0-6)
Prerequisite: BIOL 112 or equivalent
Corequisite: CHEM 212 or equivalent

Content: The aim of this course is to understand the molecular basis of biological phenomena with emphasis on the fundamental processes common to all organisms (enzymatic catalysis, DNA, RNA and protein synthesis; genome structure; mechanisms of gene expression; mechanisms of regulating gene activity).

Readings: Recommended Reading: Molecular Cell Biology by H. Lodish et al, WH Freeman & Co. 6th or 7th edition

Method: Three lectures per week, with occasional online quizzes during class time for the evaluation of student progress

Evaluation: Mid-term exam, on-line quizzes, final examination
BIOL 201 (Winter)
Cell Biology and Metabolism

Instructors: G. Brouhard Bellini 267 398-2984 gary.brouhard@mcgill.ca
T. Bernhardt (Administrator) W3/25A 398-6416 torsten.bernhardt@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 200; not open to students who have taken ANAT 212/BIOC 212.

Content: The cell is the basic unit of life, but each cell contain thousands of different enzymes and proteins. These proteins can be viewed as tiny, intricate, molecular machines. Our goal will be to understand how these machines work. More precisely, we will study how proteins and enzymes (1) harness energy from the environment, (2) use this energy to change their structure/conformation, and (3) use these conformational changes to do the work of staying alive. We will learn how malfunctions in protein machines are the basis of many diseases. No protein works alone, of course. Therefore we will study how groups of proteins interact, either working together in teams or competing against one another. The balance of these interactions is what defines cell physiology.

The lectures will focus on key experiments that established what we know now, paying attention to the individual scientists who drove progress. In addition, we will look at experiments being performed at world-class research institutions today. Students will learn how to analyze the data produced by these experiments and to predict results. The exams will emphasize the concepts behind cell biology rather than rote memorization. Topics will be selected from the following:

How Cells Harness Energy
Thermodynamics and the basic design of metabolism
Glycolysis, gluconeogenesis, citric acid cycle, fatty acid oxidation, Photosynthesis
Redox reactions, the respiratory chain, Chemiosmotic coupling

Building the Cell
Bringing in nutrients: movement across biomembranes, endocytosis
Making proteins: protein synthesis and the endoplasmic reticulum
Putting proteins in place: protein targeting, secretion, exocytosis

How Cells Move
Giving cells their shape: the cytoskeleton, microtubules, actin filaments
Moving things around: motor proteins, intracellular transport

Cells and their Environment
Receiving signals: hormones and their receptors, signalling cascades
Attachment into tissues: the extracellular matrix and adhesion
Nerve cells and communication by ion fluxes

The Life Cycle of Cells
Growing up: regulation of cell size
Making new cells: mitosis and the cell cycle
Death: apoptosis

Method: Three lectures per week.

Evaluation: Mid-term, quizzes and final examination
BIOL 202 (Winter or Summer)
Basic Genetics

Instructors:
N. Moon (Coordinator)
Bellini 266
398-2982
nam.moon@mcgill.ca
D. Schoen
NS/4A
398-6461
daniel.schoen@mcgill.ca
L. Nilson
NS/2
398-6448
laura.nilson@mcgill.ca
D. Dankort (Summer Coordin.)
Bellini 264
398-2307
david.dankort@mcgill.ca
D. Hipfner (Summer)
IRCM
987-5508
david.hipfner@ircm.qc.ca
T. Bernhardt (Administrator)
W3/25A
398-6416
torsten.bernhardt@mcgill.ca

Workload:
3 credits (3-0-6)

Restriction:
LSCI 204

Prerequisite:
BIOL 200.

Restriction:
Not open to students who have taken or are taking CELL 204

Content:
The course is designed to convey basic information on the principles of heredity in the light of modern advances in molecular biology, problems, and applications deemed relevant for the various major programs in the biological sciences. The topics covered (not necessarily in this order) include:

1) CHROMOSOMAL BASIS OF INHERITANCE
2) CLASSICAL DIPLOID GENETICS
3) EXTRACHROMOSOMAL GENETICS
4) MOLECULAR ASPECTS OF GENETICS AND GENETIC ANALYSIS
5) MOLECULAR ASPECTS OF MUTAGENESIS, MUTATIONS AND REPAIR OF MUTATIONS
6) MOLECULAR MARKERS, GENE CLONING; OTHER MOLECULAR TOOLS.
7) GENOMICS AND BIOINFORMATICS
8) GENETIC ANALYSIS OF DEVELOPMENT
9) EUKARYOTIC CHROMOSOME MAPPING IN DIPLOIDS: MAPPING GENES IN MODEL SYSTEMS AND HUMAN
10) HUMAN GENETICS, CANCER GENETICS, PROSPECTS FOR GENE THERAPY, GENETIC COUNSELING
11) POPULATION GENETICS, QUANTITATIVE INHERITANCE

Readings:

Method:
(Winter course) Three one-hour lectures and one (optional) problem based conference per week.

Evaluation:
(Winter course) Mid-term, final examination. Multiple choice and short answer.
BIOL 205 (Winter)
Biology of Organisms

Instructors: R. Dhindsa N3/11B 398-6423 raj.dhindsa@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 200, PHYS 101 or PHYS 131 or equivalent

Corequisite: BIOL 201 or ANAT 212/BIOC 212

Content: This course is designed to provide a unified view of the form and function of living organisms. Rooted in comparative physiology and functional morphology, it relates the laws of physics and chemistry to the fundamental processes of living organisms. These processes include the acquisition, distribution, storage, and allocation of energy and materials, and the mechanisms involved in growth, development and reproduction. A final section introduces environmental physiology. The focus is on the integrated functioning of the whole organism and its component organ systems, but the analysis relies heavily on mechanisms at the molecular and cellular levels of organization. Implications for population, community and ecosystem processes are discussed. Examples are drawn from a wide range of organisms, but the emphasis is on higher plants and vertebrate animals. The course assumes a background in basic biology, chemistry and physics.

1. INTRODUCTION
 Introduction to the course
 Introduction to organisms

2. ENERGY
 Energy, light and life
 Carbon assimilation
 Whole plant and whole crop photosynthesis
 Acquisition of food and digestion in animals
 Aerobic and anaerobic energy production
 Metabolism, size and activity
 Metabolic rate and temperature
 Heat exchange and temperature regulation

3. MATERIALS
 Water uptake and transport in plants
 Transpiration
 Translocation of photosynthates in plants
 Uptake and assimilation of nutrients in plants
 Biological nitrogen fixation and assimilation
 Gas exchange mechanisms in animals
 Circulation and gas transport
 Excretion

4. BIOMECHANICS
 Size and structural support
 Terrestrial locomotion
 Fluid dynamics

5. GROWTH, DEVELOPMENT AND REPRODUCTION
 Growth and development I – general considerations
 Growth and development II – plants
 Growth and development III – animals
Plant reproductive timing
Pollination and seed development
Hormones and animal reproduction
Innate immunity, memory, and learning
Aging, senescence and death

6. ENVIRONMENTAL EXTREMES
Sensing the environment – The nervous system
Sensing the environment – Sensory systems
Sensing the environment – Cellular signaling
Concepts of environmental stress
Water availability and dehydration stresses
Low and high temperature stress in plants and animals
Oxygen distribution and hypoxic stress

7. IMPLICATIONS & CONCLUSIONS
Biotechnology and social concerns
Conclusions

Readings: Only the Course Pack is required.
Following books provide supplementary information for interested students:

Method: Three lectures per week, and optional conference sessions for review and clarification of course material.

Evaluation: Two examinations consisting of short essays and problems: an evening mid-term and a final. There are 7 short pre-lecture quizzes on myCourses to encourage reading of the notes before the lectures and 4 post-lecture on-line tests. Participation in class through student-response system (clickers).
BIOL 206 (Fall)
Methods in Biology of Organisms

Instructors: M. Cristescu (Coordinator) N6/1 398-1053 melania.cristescu@mcgill.ca
& Staff
S. Bujold (Lab Coordinator) W4/3A 398-6408 sonia.bujold@mcgill.ca

Workload: 3 credits (1.5-4-3.5)

Prerequisites: BIOL 111 or equivalent.

Content: This course is designed to provide experience and training in the use of techniques important in organismal biology, and is normally taken in U1. It is organized in a series of 6 modules. Each module consists of an introductory lecture and one to two 3hr laboratory sessions.

Module 1: Biological variability and the problems of sampling. Techniques include sampling designs, descriptive statistics, collection of data in the field, use of Excel spreadsheets and graphs, interpretation of data. Afternoon field trip to Mount Royal to measure tree diameters

Module 2: Experimental design using the effects of plant hormones on seed germination and seedling growth. Statistical tests (t and chi-squared). Scientific reporting

Module 4: Animal behaviour experiment and regression analysis.

Module 5: Taxonomy and Systematics. Morphological and molecular taxonomy and phylogenetic approaches to biological classification using ants as a model taxon. Introduction to web-based biodiversity inventories.

Module 6: Experimental evolution: can evolution rescue declining populations?

Method & Evaluation: Each module will be graded based on a written report, oral presentation or test appropriate to the module. In some modules there is also assessment of technical skills learned. The final grade for the course will be based on the accumulated grades for 6 modules. Modules are weighted for grading. There will be no final examination.

Readings: There is no textbook. The course manual, available online, summarizes both the theoretical base and the technical instructions needed for each module.
BIOL 210 (Fall)
Perspectives of Science
(also open to Biology students as an elective)

Instructor: L. Lefebvre W6/10 398-6457 louis.lefebvre@mcgill.ca

Workload: 3 credits (3-0-6)

Content: The goal of this course is to allow you to read through a series of papers in various sciences, listen to a series of conferences, take a series of science courses (for most of you, in the Minor in Science for Arts or the Science for Teachers majors) and obtain and transmit the maximum amount of information concerning them: what is going on in terms of content, purpose, process, form and human activity; how is consensus about a particular scientific issue built or destroyed? You will be required to attend and summarize a series of public lectures in the Faculty of Science, as well as read a series of papers taken mostly from the journals Science and Nature.

1. Introduction: myths, community and consensus in science.
2. How scientists communicate with the general public.
3. How scientists communicate with other scientists.
4. The scientific method.
5. How scientists gather the facts required to test their questions.
6. Traditions, institutions and biases in science.
7. What if something goes wrong? Checks and balances in the system.
8. Conclusions

2) Lecture notes on myCourses

Method: Two lectures per week, plus 4 conferences in different science departments.

Evaluation: Mid-term, final examination, conference reports

Not open to U0 students
BIOL 215 (Fall)
Introduction to Ecology & Evolution

Instructors: C. Potvin (Coordinator) W6/8 398-3730 catherine.potvin@mcgill.ca
E. Abouheif N3/6 398-7190 ehab.abouheif@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 111 (or equivalent). Not open to students who have taken ENVR 202

Content: A core-level introduction to evolutionary and ecological processes. The general topics are those dealing with processes acting in all populations at all times, especially including those that bear on the assembly of communities and ecosystems. These include population dynamics, selection, competition, cladogenesis and trophic interactions.

Method: Two 1.5-hour lectures per week; tutorial conferences for discussion and clarification of material

Evaluation Assignments, midterm exam and final examination
BIOL 240
Monteregian Flora (3 Credits)
(Summer Field Course, July – not offered in 2016)

Instructors: TBA

Prerequisites: BIOL 111 or permission of the instructor. The course has been taken successfully by students in Arts, Architecture, Education and Management as well as Science.

Restrictions: Students who have already taken PLNT 358 (Plant Science) cannot take this course, but PLNT 358 can be taken after taking BIOL 240.

Content: This course is an introduction to the diversity of plants in the area surrounding Montreal, Quebec, concentrating specifically in the Saint Lawrence River Valley and on one of the Monteregian Hills, Mont Saint Hilaire. Plant groups studied include fern allies, ferns, conifers and flowering plants. Studies will be conducted at McGill’s Gault Nature Reserve field station where there are dormitories, a laboratory and a wide variety of habitats and different plant communities. Emphasis will be on field and laboratory work but some lectures will be included for background material. The course will focus mainly on plant identification, including sight recognition and use of taxonomic keys. You will learn over 200 species in the context of their habitats. For each plant group, lectures will present key characteristics for field identification of family and genera. Fieldwork will include exercises in field recognition and keying. We will take advantage of the diversity of habitat found on and around Mont Saint Hilaire to study a variety of hardwood and conifer forests, rock outcrops, marshes, bogs, floodplains and lakes. Fieldwork will also include habitat analysis with the goal of explaining and predicting species occurrence.

Method: Course is taught at the Gault Nature Reserve field station where students and staff are in residence during the week. Mornings will be devoted to lectures and observations in the field and afternoons to laboratory sessions. Fieldwork will consist of hiking (possibly in rain) to make plant collections, sight identification of plants, and habitat analyses. There is a course fee for lodging, meals, the textbook and course supplies. Students MUST contact Susan Gabe (susan.gabe@mcgill.ca) to secure permission to register for the course on Minerva and contact the course coordinator (martin.lechowicz@mcgill.ca) for more details on course and appropriate preparations for field work. The course runs two weeks in mid-July, exact dates varying slightly year to year. Contact the course coordinator well in advance to discuss the course schedule and logistics.

For more information on the course, consult the web site: http://biology.mcgill.ca/undergrad/c240t/c240add.htm

Evaluation: Grades will be based on field sight identification, plant keying and class contribution. The quiz and exam format includes a mix of field and laboratory identifications.
BIOL 300 (Fall)
Molecular Biology of the Gene

Instructors: F. Schoek (Coordinator) W5/6 398-6434 frieder.schoeck@mcgill.ca
N. Moon Bellini 266 398-2982 nam.moon@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 200, BIOL 201 or ANAT 212/BIOC 212

Part 1: Nam-Sung Moon

I. Regulation of gene expression
 A. Introduction and overview (1 lecture)
 1. Nucleic acids and gene structure
 2. Basic transcriptional mechanisms (initiation, elongation, termination)
 3. Gene structure in prokaryotes and eukaryotes
 B. Gene expression in prokaryotes (1 lecture)
 1. Transcription initiation (RNA polymerase, sigma factors)
 2. Regulation of transcription by activators and repressors
 3. Transcription termination (Rho dependent and independent, attenuation)
 C. Transcription initiation in eukaryotes (8 lectures)
 1. RNA polymerase II (holoenzyme, core promoter elements)
 2. General transcription factors and preinitiation complex assembly
 3. Mediator complexes
 4. Enhancesomes and gene expression (example: Interferon β)
 5. Insulators (example: gypsy and su(Hw))
 6. Chromatin, nucleosomes and the histone code
 7. Chromatin remodeling complexes
 8. Non-coding RNA and transcriptional control.
 D. Transcription elongation (1 lecture)

II. Post-transcriptional control of gene expression
 A. Processing of eukaryotic pre-mRNA (1 lecture)
 1. Capping, polyadenylation, splicing
 2. Coupling of transcription and processing events
 B. Regulation of pre-mRNA processing (4 lectures)
 1. Splice site recognition
 2. Alternative splicing/splice site selection
 3. RNA editing
 4. Molecular consequences of RNA processing
 C. Review session (1 lecture)

Part 2: Frieder Schöck

III. Signal transduction and Post-transcriptional cytoplasmic control of gene expression
 A. Macromolecular transport across the nuclear envelope (2 lectures)
 1. Nuclear import and export
 2. Regulated transport of transcription factors
 3. Nuclear export of mRNPs
 4. Transport of unspliced transcripts
 B. Cytoplasmic mechanisms of post-transcriptional control (5 lectures)
 1. mRNA degradation: decapping, deadenylation, nonsense-mediated decay
 2. mRNA localization
 3. Cytoplasmic polyadenylation
4. Translational repression
5. Regulation of translation initiation
6. Translational Regulation and Unfolded Protein Response
7. Feedback regulation of protein folding
8. Micro RNAs and regulation of mRNA translation and stability

C. Biochemical and genetic principles of signal transduction (3 lectures)
 1. Biochemical isolation of ligands and receptors
 2. Ligand binding to receptors
 3. Kinases and their analysis
 4. Genetic analysis of signal transduction cascades

D. G protein-linked receptors (2 lectures)
 1. Signaling through cAMP (example: fight-or-flight response)
 2. Signaling through ion channels (example: vision)
 3. Signaling through inositol phospholipids (example: CamKII-mediated short-term memory)

E. Enzyme-linked receptors and intracellular receptors (4 lectures)
 1. Receptor tyrosine kinases (example: eye development)
 2. Integrins (example: upregulation of RTK signaling in cancer)
 3. Cytokine receptors
 4. Receptor serine/threonine kinases
 5. Intracellular receptors

F. Principles of developmental signaling (1 lecture)
 1. Signal memory
 2. Lateral inhibition (example: Notch signaling)

G. Review session (1 lecture)

Method: Three lectures per week

Evaluation: Mid-term exam; Final exam
BIOL 301 (Fall or Winter)
Cell and Molecular Laboratory

Instructors: H. Zheng (Coordinator) N5/10 398-1328 hugo.zheng@mcgill.ca
P. Harrison W3/15 398-6420 paul.harrison@mcgill.ca
R. Reyes Lamothe Bellini 271 398-5137 rodrigo.reyes@mcgill.ca
A.M. Sdicu (Lab Coordinator) N4/2C 398-4917 anne-marie.sdicu@mcgill.ca

Workload: 4 credits (1-6-5)

Prerequisites: PHYS 102 or PHYS 142, BIOL 200, BIOL 201 or ANAT 212/BIOC 212, BIOL 202; BIOL 206 recommended. Enrolment in this course is limited. Departmental approval for both sessions of BIOL 301 must be obtained from the Biology Department (by e-mailing A.M. Sdicu) before registration.

Restriction: BIOC 300

Content: One 1-hr lecture and one 6-hr laboratory period per week. This course focuses on modern tools for molecular and cell biological analyses of cellular systems. Lectures will introduce students to the range of possibilities of techniques as well as their application to solve biological problems. Students will then have the opportunity to perform selected techniques in the weekly laboratories. In addition, an introduction will be provided to bioinformatics methods and their role in analysis. In-lab reports will focus on experimental design, theory and data analysis.

Readings: The Laboratory Manual is essential and available online through myCourses. There is no assigned textbook, but texts used in BIOL 200 and 201 (for e.g. Lodish) are very useful and highly recommended. Selected articles are recommended in the Manual and in lectures and are available online through PubMed and McGill Libraries.

Evaluation: The grade for the course is based on laboratory quizzes and reports, a web-based mid-term exam and a comprehensive final essay examination. Lab reports are required when each experiment is completed; these are evaluated by the lab demonstrators. The midterm and final examinations stress the theoretical and analytical aspects of the course material.
BIOL 303 (Winter)
Developmental Biology

Instructors: M. Hendricks (Coordinator) W5/11 398-6581 michael.hendricks@mcgill.ca
D. Dufort RVH 934-1934x34743 daniel.dufort@mcgill.ca
Y. Rao MGH 934-1934x42520 yong.rao@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 200, BIOL 201 or ANAT 212/BIOC 212. BIOL 300 strongly recommended.

Corequisite: BIOL 202

Content: This introductory course in developmental biology is designed to acquaint the student with the fundamental processes operating during embryonic development and cellular differentiation of plants and animals. Development will be considered at the organismal, cellular, and molecular levels to provide a total appreciation of developmental phenomena. The emphasis will be on the interpretation of important experiments that have led to an understanding of the basic principles of development.

1) Introduction, history, principles of experimental embryology (4 lectures)
2) Fertilization and early invertebrate development (3 lectures)
3) Axis patterning and early embryonic development in Drosophila (4 lectures)
4) Patterning the vertebrate body plan (4 lectures)
5) Sex determination (1 lecture)
6) Organogenesis and limb development (4 lectures)
7) Metamorphosis, regeneration and aging (1 lecture)
8) Environmental regulation of development (1 lecture)
9) Gametogenesis (2 lectures)
10) Plant development (2 lectures)
11) Evolution and development (2 lectures)

Readings: Recommended text: Developmental Biology, 10th ed. by Scott F. Gilbert, Sinauer Associates, Inc. 2014 (Note: subject to change; do not purchase before receiving course handout).

Method: There are two 90-minute lectures and optional tutorials every week.

Evaluation: Students will be evaluated on the basis of their performance on two examinations and an essay assignment. Examinations will stress the ability to design and interpret simple experiments on developing organisms. The essay will be a summary and critique of a research article from a relevant scientific journal.
BIOL 304 (Fall)
Evolution

Instructors: H. Larsson Redpath Mus. 398-4086 x 089457 hans.ce.larsson@mcgill.ca
E. Abouheif N3/6 398-7190 ehab.abouheif@mcgill.ca
A. Hendry Redpath Mus. 398-4086 x 00880 andrew.hendry@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisite: BIOL 205, BIOL 215 or ENV R 202

Content: This course provides a comprehensive introduction to evolutionary biology. It covers both short-term and long-term evolutionary processes. The material is presented in six major sections:

Part 2: Diversity. The Tree of Life. The Main Kinds of Living Organisms. The Ancestry of Living Organisms.
Part 5: Selection. Natural Selection in the Laboratory. Artificial Selection. Natural Selection in the Field.

The course as a whole will provide a set of principles based on the observed patterns and established processes of evolution that enable biologists to account for the diversity of all life and explain how the modern biota came to be.

Reading: Lecture slides plus weekly readings.

Method: Three one-hour lectures weekly. No laboratory.

Evaluation: Mid-term exam and final exam based on problems and short essays.
BIOL 305 (Winter)
Animal Diversity

Instructors:
H. Larsson RedpathMus. 398-4086 x 089457 hans.ce.larsson@mcgill.ca
D. Green Redpath Mus 398-4088 david.m.green@mcgill.ca
R. Barrett Redpath Mus 398-4086 x 00856 rowan.barrett@mcgill.ca
A. Ricciardi Redpath Mus 398-4089 tony.ricciardi@mcgill.ca
A. Hendry Redpath Mus 398-4086 x 00880 andrew.hendry@mcgill.ca

Workload: 3 credits (2-3-4)

Prerequisite: BIOL 215 or both ENVR 200 and ENVR 202

Content: The characteristics of the major groups of animals, their ancestry, history and their relationship to one another. The processes of speciation, adaptive radiation and extinction responsible for diversity. Methods for constructing phylogenies, for comparing phenotypes, and for estimating and analyzing diversity.

Topics covered will include:

Method: Two one-hour lectures and 1 three-hour laboratory each week. The lab will use modern and fossil material from the Redpath collections to teach phylogenetic and comparative methods in the context of particular animal groups.

Evaluation: Midterm exam; weekly lab quizzes; final written exam
BIOL 306 (Fall)
Neural Basis of Behaviour

Instructors:
A. Watt (Coordinator) Bellini 265 398-2806 alanna.watt@mcgill.ca
J. Sakata N4/8 398-3636 jon.sakata@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: PHYS 102 or PHYS 142 and BIOL 201 or ANAT 212/BIOC 212 or NSCI 200

Content:
This course examines the structure and function of neurons and neural circuits, with emphasis on the role of the nervous system in animal behaviour. A variety of animal models is considered. Highlights from the history of the field are integrated with the most recent experimental findings.

Basic Neurophysiology (6 lectures)
We will explore the mathematical biophysics of excitable cells and how they use membrane potential to store and transmit information. Topics include the ionic mechanisms underlying the electrical activity of nerve cells, the cellular mechanisms of synaptic transmission, and the impact of these basic mechanisms on the operation of neural circuits.

Sensory and motor systems (23 lectures)
This section explores concepts of neural information processing using a variety of vertebrate and invertebrate model systems. The focus is on peripheral and central processes underlying well-defined behaviours. The fruitfulness of multidisciplinary approaches is stressed, ranging from physics and behavioural experimentation to electrophysiology and computational neuroscience.

Neurogenetics (8 lectures)
We will survey examples of behaviours whose genetic basis has been elucidated. The emphasis is on integration of genes, neurophysiology, circuits and behaviour to generate a deep understanding of how nervous systems evolve and how they can be manipulated on the genetic level. Topics will include: sleep, circadian rhythms, aggression and sexual behaviour.

A detailed listing of lecture topics from the most recent offering of the course is available on Minerva

Method: Three lectures weekly.

Evaluation: Midterm examinations, final examination
BIOL 307 (Winter)
Behavioural Ecology

Instructor: S. Reader W3/14A 398-6421 simon.reader@mcgill.ca

Workload: 3 credits (2-1-6)

Prerequisites: BIOL 205, BIOL 215 or permission of instructor.

Content: This course is designed as an introduction to animal behaviour and to ecology at the level of the individual organism. It takes an evolutionary perspective on the relationships between the behaviour of individual animals and their physical environment, their predators and prey, and the activities of members of their own and other species. Emphasis will be on general principles emerging in this rapidly developing field. Application of these principles to the biology of humans will be discussed. An important secondary theme of the course is the process of critical and creative reading of primary research articles in the field. The conferences will involve discussions of research articles to enrich understanding of the lecture material and to illustrate the process of critical reading. The written critiques require evaluation of the strengths and weaknesses of a particular research article and its significance for the major themes of the course.

Lecture 1. Introduction: Why study behavioural ecology?
Lecture 2. History of the field
Lecture 3. The analysis of behaviour
Lecture 4. Observing and quantifying behaviour
Lecture 5-6. Testing adaptive explanations
Lecture 7. Foraging behaviour
Lecture 8. Predicting foraging behaviour using optimality models
Lecture 9. Predator avoidance
Lecture 10. Habitat selection
Lecture 11. Game theory
Lecture 12. Social foraging
Lecture 13. Animal cognition
Lecture 14. Evolution of social organisation
Lecture 15. Mating systems and resource defence
Lecture 16. Communication
Lecture 17. Sexual selection, mate choice, and sexual conflict
Lecture 18. Reproduction
Lecture 19. Parental care, sibling rivalry and parent-offspring conflict
Lecture 20. Kin selection and eusociality
Lecture 21. Cooperation between non-relatives
Lecture 22-23. Mechanisms of behaviour
Lecture 24. Human behavioural ecology
Lecture 25. Conservation and behavioural ecology
Lecture 26. Summing up

Method: Two lectures a week plus seminar.

Evaluation: Take-home exam consisting of critiques of research papers during term, oral presentation, and a midterm and final examination.
BIOL 308 (Fall)
Ecological Dynamics

Instructor: F. Guichard W3/3 398-6464 frederic.guichard@mcgill.ca

Workload: 3 credits (3-1-5)

Prerequisites: BIOL 215 or both ENVR 200 and ENVR 202.

Content:
- Population dynamics
 - Population growth
 - Regulation of population growth
 - Time delays and stochastic processes
 - Metapopulation dynamics
- Species interactions
 - Competition
 - Predator-prey
 - Epidemics
 - Mutualism
- Community dynamics
 - Multispecies communities and niche theory
 - Island biogeography
 - Successions
 - Food chains and trophic interactions
 - Food webs

Method: Two 1.5 hour lectures per week; four 2–hour tutorials over the semester.

Evaluation: Midterm exam, problems based on tutorials and final examination. The exam will consist of multiple choice questions, short answer questions and problems.
BIOL 309 (Fall)
Mathematical Models in Biology

Instructor: L. Glass (Physiology) McIntyre, Room 1118 398-4338 glass@cnd.mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: 1 year of calculus; an additional course in Calculus is also recommended; or permission of instructor.

Content: The main objective is to give the student basic skills necessary to understand the ways mathematics can be applied to study biological systems.

1) FINITE DIFFERENCE EQUATIONS IN BIOLOGY (12 lectures)
Dynamics in 1-dimensional finite difference equations modeling ecosystems including concepts of steady states, cycles and chaos. Boolean switching networks as applied to genetic regulation. Cellular automata and fractals.

2) DIFFERENTIAL EQUATIONS (14 lectures)

Readings: Understanding Nonlinear Dynamics by Daniel Kaplan & Leon Glass (Springer-Verlag, 1995)

Method: 2-1/2 hours lecture per week.

Evaluation: Critical review of a scientific article, homework, class test, final.
BIOL 310 (Winter)
Biodiversity and Ecosystems

Instructor:
A. Hendry (Co-ord.) RedMus Rm 205 398-4086x00880 andrew.hendry@mcgill.ca
I. Gregory-Eaves W6/5 398-6425 irene.gregory-eaves@mcgill.ca
F. Guichard W3/3 398-6464 frederic.guichard@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisite: BIOL 215 or both ENVR 200 and ENVR 202, MATH 112 or equivalent; or permission of the instructor

Content: This course provides undergraduate students with a strong ecological and evolutionary basis to understand the natural causes and consequences of current global environmental changes. It explores the origin and distribution of biodiversity, how biodiversity is defined and measured, how it varies in space and time, and how its loss impacts human societies. BIOL 304, BIOL 308 and BIOL 310 will be highly complementary. BIOL 310, however, does not require BIOL 308 or BIOL 304 as prerequisites. Students with an environmental interest will find much relevant material in this course.

Topics covered include:
- Biodiversity: concepts & measurement
- The spatial distribution of biodiversity
- Evolutionary origins of diversity
- Ecological determinants of species richness, from local to global scales
- Ecosystems: productivity, regulation, stability, regime shifts
- Biodiversity and ecosystem services
- Global change: biogeochemical cycles, climate, biodiversity
- Species extinction and the biodiversity crisis
- Global conservation priorities

Method: Two 1.5-hour lectures per week. Two assignments with problem sets to be analyzed on a computer during the semester. One field trip to Mont St-Hilaire followed by a tutorial to analyze data from the field trip, and a written report

Evaluation: Final exam, problem sets, field trip report
BIOL 313 (Winter)
Eukaryotic Cell Biology

Instructor: M. Zetka (Coordinator) W5/28 398-6445 monique.zetka@mcgill.ca
TBA

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 200, BIOL 201 or ANAT 212/BIOC 212, BIOL 202

Content:
A study of cell biology of eukaryotes focusing on the assembly and function of cellular structures, their relationship to the cell cycle; the dynamics of the cytoskeleton and its motors; mechanics of cell division, cell cycle and checkpoints, nuclear dynamics, chromosome structure and behaviour, with a strong emphasis on experimental approaches.

1) **ANALYSIS OF CELLULAR PROCESSES** (Chapters 8 and 9; 2 lectures)
 - Genetic, molecular, and biochemical analyses
 - Visualizing cellular processes and individual molecules
 - Microscopy

2) **MULTIDISCIPLINARY APPROACH TO A COMPLEX CELLULAR PROCESS: THE NUCLEOCYTOPLASMIC TRANSPORT** (2 lectures)
 - Ultrastructural studies and 3D reconstruction.
 - Reconstitution of transport and identification of underlying molecular mechanisms.
 - Biochemical/biophysical principles of nuclear transport.
 - Ran and the molecular evolution of basic cellular mechanisms.

3) **REGULATION OF PROTEIN STABILITY** (2 lectures)
 - Introduction to protein folding, domains and modules
 - Protein turnover, theory and experimental approaches

4) **CELL STRUCTURE AND CELL ADHESION** (2 lectures)
 - General introduction to cell structure
 - Epithelial polarity, junctional organization
 - Cell-cell and cell-matrix adhesion

5) **THE DYNAMICS OF THE CYTOSKELETON** (5 lectures)
 - Microtubules, actin, and intermediate filaments
 - Regulation of cytoskeletal filaments
 - Molecular motors, force generating systems and intracellular motility
 - Integrative mechanisms, molecular and cellular basis of cell migration

6) **CELL CYCLE, CHECKPOINTS, APOPTOSIS, CANCER** (Chapters 17 and 23; 7 lectures)

7) **MECHANICS OF CELL DIVISION** (Chapter 18; 2 lectures)
 - Molecular mechanisms of mitosis

8) **CELL BIOLOGY OF DEVELOPMENT** (Chapter 20 and 21; 4 lectures)
 - Gametogenesis and fertilization
 - Control of embryonic cell divisions and patterning

Readings:

Method:
Three hours of lectures each week.
Evaluation: Students will be evaluated on the basis of a one-hour mid-term exam and a cumulative final exam.

BIOL 314 (Fall)
Molecular Biology of Oncogenes

Instructor:
L. Majewska (Coordinator) Glen Campus 412-4400 x23279 lloydie.majewska@mcgill.ca
T. Duchaine McGill Cancer Ctr 398-8649 thomas.duchaine@mcgill.ca
D. Dankort Bellini 264 398-2307 david.dankort@mcgill.ca
G. Ursini-Siegel JGH 340-8222x6557 giuseppina.ursini-siegel@mcgill.ca
P. Tonin Glen Campus 937-6011x44069 patricia.tonin@mcgill.ca
K. Christensen Glen Campus 937-6011x44069 karen.christensen@mail.mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 200, BIOL 201 or ANAT 212/BIOC 212

Content: Successive accumulation of mutations of normal genes in a single cell results in the alteration of several physiological pathways/events/molecules, which collectively contribute to the genesis of cancer. Genetic damage found in cancer cells is of two types: 1. One is dominant and in this process the genes are termed proto-oncogenes. A proto-oncogene is a normal gene whose protein product has the capacity to induce cellular transformation given it sustains some genetic insult. An oncogene is the gene that has sustained some genetic damage and, therefore, produces an abnormal protein capable of cellular transformation and cancer. 2. The other is recessive and the genes involved in this process are variously termed as tumor suppressors, growth suppressors, recessive oncogenes or anti-oncogenes. Events known to promote the formation of oncogenes, the biochemical properties of the proteins encoded by these mutated genes, and their functions will be analyzed in an attempt to understand the molecular basis of human cancers. We will also examine current molecular targets for cancer therapy and the concepts and consequences of inheriting mutations in genes that predispose to cancer.

The Aim of this course is to:
Evaluate the relationship between oncogenes and cancer;
Analyze the key physiological changes in cancer cells and oncogenes involved in the induction of such changes
Compare the major requirements for cancer
Analyze these requirements during normal development
Critically analyze research papers in cancer
Propose hypothetical new molecular targets for cancer therapy

I. Evaluate the relationship between oncogenes and cancer
1- Identify and define cellular structural and components from gene to proteins
2- Define cellular homeostasis and apply the concept to a concrete example
3- Provide a comprehensive classification of proto-oncogenes
5- Identify some common facts about cancer
6- Compare and identify the common activation mechanisms of normal genes to activate oncogenes
7- Define concepts of cancer predisposition in the context of heritable mutations in cancer associated genes

II. Characterize the role of growth factor receptors and major signal transduction pathways in cancer
1- Growth factor receptors as oncproteins and the role of tyrosine phosphorylation in
cancer. (Provide example of GFR and means of abnormal activation)

2- Intra-cellular signaling: describe major oncogenes and signaling pathways involved in cancer including src, ras and Akt; integrate molecular events from the cell surface to the nucleus.

3- The contribution of aberrant signal transduction to cancer cell using specific examples for cell surface, intracellular and nuclear events. Provide specific examples of known cancers that thrive on aberrant signaling events and how different oncogenic signals can be integrated in the same cell.

III. Cell cycle, inflammation and apoptosis in cancer
1- Review the cell cycle and describe the two major cell cycle pathways p53 and Rb.
2- Describe the mechanisms of cell death and inflammation
3- Explain how evasion of apoptosis can lead to cancer (Oncogenes bcl/bax; p53)
4- Define the Limitless replicative potential (immortalization)-Telomere, telomerase and immortalization (oncogene hEST2/hTERT/hTRT)
5- Describe the one carbon metabolism pathway and its relationship to cancer.
6- Justify the need for Genomic instability - Loss of genes involved in sensing and repairing DNA damage or chromosomal segregation during mitosis (example: MSH2 family of genes, hSecurin gene)

IV. Angiogenesis, epithelial mesenchymal transition and cancer models
1- Define Sustained angiogenesis and explain its role in cancer- Production of angiogenesis factors (VEGF)
2- Analyze the need for cancer cells to invade tissues and to metastasize - Functional elimination of genes that suppress the cell’s ability to invade tissues and to metastasize (example: E-cadherin gene, CDH1 gene)
3- Compare the role of EMT in development with cancer – does E-cadherin and stromal genes play similar roles?
4- Compare in vivo versus in vitro models of cancer

V. Translating molecular events to cancer therapy: How a precise molecular understanding of cancer can directly affect cancer therapy.
1- An overview of molecules designed or selected to target major oncogenes and are currently used in cancer therapy: Farnesyl transferase inhibitors, receptor tyrosine kinase inhibitors, angiogenesis inhibitors, mTor inhibitors.
2- What cancers can be molecularly targeted? Example of Chronic Myelogenous Leukemia, Gastro-intestinal stromal tumours, breast, lung and brain cancers.
3- The role of gene therapy in cancer. Other perspectives currently under investigation in cancer therapy.
4- Immunotherapy and cancer (hairy cell leukemia, BCG inoculations, stem cell transplantation).
5- Through the example of one highly aggressive cancer the review of major oncogenes, oncogenic pathways and available molecular targets for adjuvant treatments will be performed.

VI. Concepts and consequences of inheriting mutations in cancer predisposing genes
1- Susceptibility to retinoblastoma: paradigm for the discovery of cancer predisposing genes
2- Translation of knowledge: discovery of breast cancer susceptibility genes
3- Features of cancer predisposing genes: variety of gene functions

Readings: The lectures and notes will be based on primary literature (reviews or papers that will be assigned by each professor). Students are strongly encouraged to attend lectures and use, as a reference, The Biology of Cancer by Robert Weinberg. Garland Science, 2006.

Method: Three hours of lectures per week.
Evaluation: Mid-terms, written assignments, final examination. Exams will be based on materials presented and discussed in class.

BIOL 316 (Fall)

Biomembranes and Organelles

Not offered in 2016-2017

Instructor: H. Zheng (Coordinator) NS/10 398-1328 hugo.zheng@mcgill.ca
A. Watt Bellini 265 398-2806 alanna.watt@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisite: BIOL 201 or ANAT 212/BIOC 212

Contents:

"Long ago it became evident that the key to every biological problem must finally be sought in the cell, for every living organism is, or at some time has been, a cell." The central importance of Cell Biology in biological sciences was well summarized by E.B. Wilson (1856-1939), a pioneering American zoologist and geneticist. The emphasis of this course is on the molecular basis of the structure and function of eukaryotic cells. As a subject of experimental science, the rapid advance in cell biology is largely dependent on and driven by results from laboratory research. Therefore some classical and modern experimental methods and State-of-Art techniques to study cells will also be discussed.

The lectures will discuss the following advanced cell biology topics:

1) Membrane structure: membrane lipid and proteins; membrane transport; ion channels in nerve cells

2) Cellular energetics: chloroplasts, mitochondria, peroxisomes and mitochondria diseases

3) Endomembrane system: The dynamics and function of ER, Golgi and post-Golgi organelles; protein trafficking and human diseases

4) Social interaction of cells: extra-cellular matrix and plant cell walls

Method: Three hours of lectures per week

Evaluation: Three assignments and a final exam
BIOL 319 (Winter)
Introduction to Biophysics

Instructor: P. Wiseman Rutherford Building 398-6524 paul.wiseman@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 200, MATH 222, PHYS 230, PHYS 232 or PHYS 253 or permission of the instructor

Restrictions: Not open to students who have taken or are taking PHYS 319.

Content: Emergence physical approaches and quantitative measurement techniques are providing new insights into longstanding biological questions. This undergraduate course will present underlying physical theory, quantitative measurement techniques, and significant findings in molecular and cellular biophysics. Principles covered include Brownian motion, low Reynolds-number environments, forces relevant to cells and molecules, chemical potentials and free energies. Those principles are applied to enzymes as molecular machines, DNA and RNA. U2 and U3 students with training in physics and quantitative biology will be well-suited to the course.

Topics covered (not necessarily in order):
Introduction to physical biology and quantitative modeling.
Brownian motion and diffusion.
Stokes-Einstein relation and applications.
Gibbs free energy and Entropy.
Kramers theory, diffusion-limited reaction rates, and dynamics in the cell.
Mechanical and chemical equilibrium in the living cell.
Chemical binding kinetics, membrane receptors
Intermolecular forces.
Electrostatics in salty solutions.
Cellular membranes and membrane potential DNA Mechanics.
Cytoskeleton and dynamics.
Biophysics applications of fluorescence and super-resolution optical microscopy

Method: 3 hours lecture

Evaluation: Assignments, presentations and participation, midterm and final exams

BIOL 320 (Winter)
Evolution of Brain and Behaviour
Instructors: S. Woolley (Coordinator) N4/8 398-2324 sarah.woolley@mcgill.ca
 Jon Sakata N4/8 398-3636 jon.sakata@mcgill.ca

Workload: 3 credits (2-1-6)

Prerequisites: NSCI 201 or BIOL 306

Content: The diversity of behaviour that exists across vertebrate taxa is rooted in variation in the organization and structure of specific neuroanatomical circuits. We will examine how particular brain systems differ across species and how these species differences in neuroanatomy contribute to species differences in behaviour. This course will build upon rudimentary principles of neuroscience, behavioural control, and evolution.

Readings: Readings will be taken from textbooks as well as journal articles.

Method: 2 hours lecture and 1 hour mandatory seminar per week

Evaluation: Midterm and final exams, short written assignments, class participation

BIOL 324 (Fall)
Ecological Genetics (3 credits)
(not offered in 2016-2017)
Instructor: D. Schoen
N3/8A 398-6461 danielschoen@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 202

Content: The aim of this course is to present evolutionary genetics within an ecological context. The course will cover theoretical topics together with relevant data from natural populations of plant and animals. The topics presented are complementary to higher level courses in evolution. Topics include:

1) THE ECOLOGICAL CONTEXT OF EVOLUTIONARY CHANGE (1 lecture)
2) TYPES OF GENETIC VARIATION: DNA, PROTEINS, QUANTITATIVE VARIATION (1 lecture)
3) ORGANIZATION OF GENETIC VARIATION (2 lectures)
 A) Population, races, ecotypes, species
 B) Hardy-Weinberg equilibrium
 C) Two loci. Linkage equilibrium
4) POPULATION STRUCTURE (5 lectures)
 A) Inbreeding theory and mating systems
 B) Population subdivision
 C) Effective population size and genetic drift
 D) Shifting balance theory
5) EFFECTS OF NATURAL SELECTION ON GENE FREQUENCIES IN POPULATIONS (9 lectures)
 A) Differential survival, reproduction, and fitness variation
 B) Basic modes of selection
 C) Frequency- and density-dependent selection
 D) Selection in heterogeneous environments
 E) Selection and gene flow
 F) Selection and mutation
 G) Selection and genetic drift
 H) Fisher’s fundamental theorem
6) POLYGENIC TRAITS AND EVOLUTION (4 lectures)
 A) Polygenic inheritance and the analysis of phenotypic variation
 B) Phenotypic description of selection
 C) Heritability, genetic correlation, and selection
7) EVOLUTION AT THE MOLECULAR LEVEL (4 lectures)
 A) Rate and patterns of sequence evolution
 B) Neutral theory
 C) Gene duplication, unequal crossing over, transposition, and concerted evolution
 D) Mobile genetic elements and selfish DNA

Readings: To be announced

Method: Two lectures per week; one group discussion per week.

Evaluation: Mid term, final exam, participation and discussion and problem sets
BIOL 331 (Fall)
Ecology/Behaviour Field Course (3 credits)
(given last two weeks of August)

Instructors:
G. Fussmann (Coordinator)
M. Lechowicz
S. Reader
W6/4
W6/8A
W3/14A
398-1370
398-6456
398-6421
gregor.fussmann@mcgill.ca
martin.lechowicz@mcgill.ca
simon.reader@mcgill.ca

The professors teaching the course vary from year to year, as do the specific dates of the course but in general the course is taught the last two weeks before classes begin. Check the course web site in late winter for specific teachers and course dates for the coming fall.

Prerequisites: BIOL 206, BIOL 215

Content: The aim of this course is to provide training in basic methods for the quantitative study of plant and animal systems and the testing of hypotheses in nature. The course is held at McGill’s Gault Nature Reserve on Mont St. Hilaire. During the first eight days of the course students participate in four 2-day modules structured to provide experience in the study of both aquatic and terrestrial environments. Each module is organized around a research problem and includes elements of experimental design, data collection, analysis and interpretation. Two-and-a-half days are devoted to independent research projects designed and executed by students working singly or in small teams. This independent study project forms the basis of a written report which is completed in September after the conclusion of the field component. This is an excellent introduction to field studies in the environmental sciences that provides an affordable and stimulating experience under the guidance of 4 professors representing a variety of perspectives on ecology and animal behaviour.

Method: Although this is technically a fall course, it is in fact completed by October. The course begins with a 12-day field course during the last two weeks of August just before fall classes (specific dates vary year to year), followed by completion of an independent project in early fall. You can count on spending the equivalent of one full week during the first three weeks of the fall term in analysis of results, literature review and report writing.

Evaluation: On basis of field work and written report.

Registration: Students should contact Susan Gabe (Stewart Building, W3/25B) before May 1 to sign up for the course (20 slots, first come first served) and pay a deposit of $150 toward room and board costs. The required application form and additional information can be found on the BIOL 331 web site (http://www.biology.mcgill.ca/undergrad/C331A/index.htm). Be aware that your deposit will be refundable up to June 30, but not after that. We will maintain a waiting list once 16 people have signed up on MINERVA; if someone drops the course than students on the waiting list will be allowed to register in the order in which their applications were received. A minimum of 12 students is required for the course to be offered. Deposits will be returned to students if the course is not given.
BIOL 334D1/D2 (Winter/Summer)
Applied Tropical Ecology (3 credits)
(Winter meetings; 2 weeks in May)

Instructor: F. Guichard Co-ordinator) W3/3 398-6464 frederic.guichard@mcgill.ca
T. Bureau N4/1 398-6472 thomas.bureau@mcgill.ca
TBA

Prerequisites: BIOL 206, BIOL 215 OR both ENVR 200 and 202, and permission of instructor.

Content: This course focuses on aspects of marine and terrestrial tropical ecology relevant to
conservation of natural resources and other applied problems. It is taught at McGill’s
Bellairs Research Institute in Barbados, for two weeks in May. The course is organized as a
series of small-group field exercises and projects. Limited enrolment. Students interested
in taking the course should fill out an application form and attend the information session
in October or November. The course fee (approx. $1400) covers all expenses in Barbados
but not tuition and airfare.
See the web site for more details: http://www.biology.mcgill.ca/undergrad/c334b/

N.B. This course is completed in the summer term. Students in their last
year will only graduate in Summer (Oct/Nov convocation) at the earliest.

Readings: Course Pack and articles available through myCourses

Method: 12-day field course. Students should expect to work all day, every day, of the course. Field
work often involves both aquatic and terrestrial studies, but topics change from year to
year.

Evaluation: Based on participation in field work, evaluation of a project carried out during the course
and results of an examination before the start of the course which tests understanding of
preliminary readings.

BIOL 335 (Summer)
Marine Mammals (3 credits)
Huntsman Marine Science Centre (HMSC), New Brunswick
(2 weeks in August)

Instructor: C. Hood Huntsman Marine Science Centre http://www.huntsmanmarine.ca

Prerequisite: BIOL 205

Content: The course is taught at the Huntsman Marine Science Centre, St. Andrews, N.B., generally
but not always, during the month of August (see the Summer Studies calendar for exact
dates). It is an introduction to the biology of marine mammals with special emphasis on
whales and seals of the Bay of Fundy and Northwest Atlantic waters, though marine
mammals from global locations will be discussed. There will be frequent field trips to
observe marine mammals in their natural habitat. Lectures and laboratory sessions will
cover such topics as: introduction to and identification of marine mammals, their
distribution and abundances, origin and evolution, historical zoogeography, adaptations
and community ecology as well as future prospects. For more information see the
Undergraduate Coordinator in W3/25B - Stewart Biology Building, or check out the web
site at: http://www.huntsmanmarine.ca/

Method: The minimum of 130 contact hours over the two-week period combines formal lectures,
laboratory exercises, field trips, and individual research projects.
Evaluation: Presentations, term paper, laboratory notes and participation, final exam

Note: Students must APPLY EARLY TO HUNTSMAN, well before registering with McGill

BIOL 342 (Winter)
Contemporary Topics in Aquatic Ecology (3 credits)

Instructor: L. Gregory Eaves (Coordinator) W6/5 398-6425 irene.gregory-eaves@mcgill.ca & Staff

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 205, and BIOL 215 or both ENVR 200 and ENVR 202

Restrictions: Not open to students who have taken or are taking BIOL 432

Content: The course teaches fundamental concepts in aquatic ecology by addressing topics that represent some of the most pressing issues environmental issues of the day. Seminars provide baseline knowledge about the structure and function of aquatic ecosystems and how these are altered by processes including climate change, ocean acidification, habitat loss and eutrophication.

Readings: Selected book chapters and the primary literature

Method: 3 hours of seminar per week

Evaluation: Short written assignments, oral presentations, final term paper and class participation:

BIOL 350 (Fall)
Insect Biology and Control (3 credits)

Instructor: G.B. Dunphy Dept. Natural Resource Sciences 398-7903
Macdonald Stewart Building 398-7990
Macdonald Campus E-mail: gary.dunphy@mcgill.ca

Workload: 3 credits (2-0-7)

Prerequisites: BIOL 205 or permission of the instructor. Students without the necessary prerequisite are strongly encouraged to contact the professor for permission

Restrictions: Not open to students who are taking or who have taken ENTO 330 or ENTO 350.

Content: A lecture course designed to introduce insect structure, physiology, behaviour, biochemistry, development, systematics, evolution, ecology and control. The course stresses interrelationships and integrated pest control. (Minimum enrolment 12 students).

1) Introduction
2) External anatomy
3) Internal anatomy
4) Physiology
5) Test of material from lectures to date
6) Sensory systems
7) Insects and their environments
8) Pest insects in agriculture, forestry and medicine
9) Pest control by chemical, cultural and physical methods
10) Test of material covered since previous test
11) Predators and parasitoids in biological control
12) Virus control of pest insects
13) Bacterial control of pest insects
14) Insect immunity

Readings: *The Insects, an Outline of Entomology* by P.J. Gullan and P.S. Cranston, 2000 Chapman & Hall

Method: Lectures, modules and term papers.

Evaluation: Final exam, 2 midterm tests, and term paper

BIOL 352 (Winter)

Vertebrate Evolution: Mammals & Dinosaurs (3 credits)

(Given in alternate years: not offered in 2016-2017)

Instructor: V. Millien (Coordinator) W3/20 398-4849 virginie.millien@mcgill.ca
H. Larsson Redpath Museum 398-4086 x089457 hans.ce.larsson@mcgill.ca

Workload: 3 credits (2-3-4)

Prerequisite: BIOL 304 or permission of the instructor.

Content: The main objective is to acquaint the student with the pattern of vertebrate evolution from the Cambrian to the present. The origin, basic anatomy and adaptation of all the major groups of vertebrates will be discussed, together with consideration of the evolutionary processes that underlie their radiation. An underlying theme of comparative anatomy and comparative embryology will thread the course. The laboratory dissections will cover a wide range of vertebrate diversity to introduce the student with major anatomical changes throughout the course of vertebrate evolution.

- Chordates and vertebrates
- Origin, development, and anatomy of the skull and vertebral column
- Jawless fish and the origin of bone
- Jawed fish and the origin, development, and anatomy of jaws and teeth
- Evolution, development, and anatomy of fins, limbs, vasculature, and skulls
- Radiation to land and early tetrapods
- Amphibians
- Reptiles
- Dinosaurs and more dinosaurs
- Birds
- Mammals
- Vertebrates as a model for the study of macroevolution

Readings: There is no textbook or course pack. Each lecture may be accompanied by readings available through the course’s myCourses site.

Method: Lecture and laboratories.

Evaluation: Mid-term exam, lab exam, presentations and written project and final exam
BIOL 370 (Fall)
Human Genetics Applied

Instructors: R. Palmour (Coordinator) Irving Ludmer Bldg 398-7303 roberta.palmour@mcgill.ca
& Staff Administrative office N5/13 398-3600

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 200, 201 or ANAT 212/BIOC 212, and 202

Content: The extraordinary expansion in the applicability of human genetics to human welfare has created not only exciting possibilities for reducing disease and improving health, but also real and potential problems -- ethical, moral and practical. This course will summarize the factual basis of the issues at a level intelligible to second- and third-year undergraduates, using the following topics, and drawing upon examples from the experience of the lecturers.

1. GENETIC VARIATION (2 lectures)
 Phenotype, protein, DNA
2. THE HUMAN GENOME (2 lectures)
 Sequencing and mapping the human genome
 The genetics of gene expression
3. MENDELIAN AND NON-MENDELIAN TRAITS (7 lectures)
 Linkage analysis; genotype-phenotype relationships;
 Defining and mapping complex traits; whole genome association
4. EPIGENETICS (1 lecture)
 Post-natal modifications of the somatic genome and its effects on gene expression
5. BEHAVIOUR (2 lectures)
 Behavioral traits; major psychiatric disorders
6. POPULATION GENETICS (2 lectures)
 Basic concepts; mutation and selection; founder effect and genetic drift
7. DEVELOPMENTAL AND REPRODUCTIVE GENETICS (3 lectures)
 Basic concepts; dysmorphologies; preimplantation diagnosis
8. SCREENING AND THERAPY OF GENETIC DISEASE (2 lectures)
 Theory (sensitivity; specificity; cost-benefit); practice
 Phenotherapy, genotherapy, ethics/eugenics
9. CANCER GENETICS (1 lecture)
 From families to genes; clinical applications
10. GENE THERAPY (1 lecture)
 Approaches and methodologies; promises and risks
11. GENETIC COUNSELLING (1 lecture)
 Risks (empirical, Bayesian, chromosomal); prenatal diagnosis;
 ethical and social issues

Readings: Human Molecular Genetics 3rd ed by Strachan & Reed (should be 4th edition by 2008-09)

Method: Two 1.5 hour lectures per week; conference groups led by graduate student.

Evaluation: Mid-term, Take-home paper; Final; Conferences-optional
The aim of this course is to introduce students to the foundations of the analysis of biological data while emphasizing the assumptions behind statistical tests and models. I shall not as in the mathematical statistics course, go into detail about the specific mathematical derivations. The course is designed to give a student the ability to intelligently use the statistical techniques typically available on computer packages such as SYSTAT or SPSS.

APPROXIMATE ORDER OF TOPICS COVERED
- Course introduction; Introduction to data presentation
- Populations and samples; Pseudoreplication; Central tendency and variability
- Introduction to probability
- Normal distribution
- Introduction to hypothesis testing
- One-sample hypotheses
- Two-sample hypotheses: the t-test
- Non-parametric statistics: Mann-Whitney; Data transformation
- Paired-sample hypotheses
- Multi-sample hypotheses: single-factor ANOVA
- Multiple comparisons
- Power, sample size, and assumptions in ANOVA; non-parametric ANOVA: Kruskal-Wallis test
- Two-Factor ANOVA with equal replication
- Two-Factor ANOVA: theory and multiple comparisons.
- Two-Factor ANOVA without replication; Randomized block; Repeated measures
- Hierarchical ANOVA, MANOVA
- Linear Regression
- Linear Regression; Hypothesis testing
- Multiple regression, Polynomial Regression, ANCOVA
- Goodness of fit: Chi-square
- Contingency tables
- Advanced topics

You may not be able to get credit for this course and other statistic courses. Be sure to heck the Course Overlap section under Faculty Degree Requirements in the Arts or Science section of the Calendar. Check out: http://www.mcgill.ca/study/2013-2014/faculties/science/undergraduate/ug_sci_course_reqs - booknode-52063

(Not available in book store but can be ordered)

Method: Lectures and labs.

Evaluation: Labs, class assignments, and a final exam.
BIOL 377 (Fall, Winter, Summer)
Independent Reading Project (3 credits)

Instructor: Any staff member of the Biology Department.

Coordinator: N. Nelson W3/25 398-4109 nancy.nelson@mcgill.ca

Prerequisite: BIOL 200 and BIOL 201 (or ANAT/BIOC 212); or BIOL 215; or permission

Restriction: Open to U2 or U3 students in Biology only

Cannot be taken under the S/U option

BIOL 385 (Fall)
Plant Growth and Development

Instructor: R. Dhindsa N3/11B 398-6423 raj.dhinda@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisite: BIOL 205

Content: This course focuses on physiological, biochemical and molecular genetic bases of plant growth and development. Topics covered include modular body plan of higher plants, signal perception and transduction, plant hormones, mutation genetics as a tool to study development, features of growth of the plant body and its organs, initiation and development of plant organs, transition to flowering, and senescence and death. Plant development under some environmental extremes, and manipulation of plant growth and development for agronomic purposes are briefly dealt with.

I. Introductory topics

- Introduction to the course
- Introduction to plant body: Alternation of generations
- Introduction to higher plant body: Modular structures
- Cell structure and cell water
- Signal perception and transduction
- Phytohormones and growth regulators
- Molecular genetic basis of growth and development

II. Seed germination and growth

- Seed germination
- Cell division and its role in growth
- Seedling growth and secondary growth
- Hormonal and environmental control of growth

92
III. Development of the body

Development – General features
Cell wall and cell development

Cell-intrinsic and extrinsic information
Plant meristems
Shoot apex and development
Root apex and development
Leaf development
Photomorphogenesis
Flowering time
Flower development
Pollination and fertilization
Fruit development and ripening
Embryogenesis, fruit development and ripening
Innate immunity and memory in plants
Programmed cell death and senescence

IV. Plant Interaction with stressful environment

Plant Environment
Plant responses to pests and pathogens
Plant responses to heavy metals
Plant responses to oxidative stress

Method: 3 hours lectures per week

Other books of interest:

Evaluation: Two mid-term tests and a final exam
BIOL 389 (Winter)
Laboratory in Neurobiology

Instructors:
A. Watt (Coordinator) Bellini 265 398-2806 alanna.watt@mcgill.ca
R. Krahe W3/23A 398-8065 rudiger.krahe@mcgill.ca
M. Hendricks W5/11 398-6581 michael.hendricks@mcgill.ca

Workload: 3 credits (1-5-3)
Prerequisites: BIOL 306 or NEUR 310 or NSCI 200 or PHGY 311 or permission of instructor. Enrollment is limited to 32 students (16 per section)

Content: The main objective of the course is to allow students to experience firsthand how neurobiological questions are asked and answered. In each of the following three course sections, you will first be introduced to the relevant experimental techniques and then conduct a small independent research project.

1) Optogenetic control of behaviour (4 labs). "Optogenetics" refers to a set of tools and methods that allow for the activation or inhibition of neurons using light. Genes encoding ion channels that open in response to specific wavelengths of light, originally isolated from microorganisms, are expressed in neurons, causing them to become light sensitive. You will use transgenic fruit fly larvae expressing optogenetic channels in different classes of neurons to test hypotheses about the role of specific neural circuits in locomotory and navigation behaviours.

2) Intrinsic and network properties of identified neurons (4 labs). In many invertebrate animals, such as the leech, which will be used here, neurons are individually identifiable based on their morphology and physiology. You will learn to perform intracellular recordings from specific neurons in the leech nervous system and how to determine the electrical properties of nerve cells in a quantitative manner using basic biophysical experiments. Finally, in an experiment designed by yourself, you will have the opportunity to study the role of specific ion channels and synaptic input for the electrical activity of individual neurons.

3) Synaptic plasticity (4 labs). Using a mammalian in vitro preparation, you will use extracellular stimulation combined with field recordings to study long-term potentiation (LTP) and/or long-term depression (LTD) at synapses; mechanisms believed to be the cellular basis of learning and memory. With input from the instructor and colleagues, you will then design and conduct experiments to delve more deeply into the mechanistic underpinnings of synaptic plasticity.

Readings: Selected journal articles.

Method: 1 hour lecture, 5 hours laboratory; students work in pairs.

Evaluation: The grade will be based on three written laboratory reports, each of which follows the format of published journal articles.
BIOL 395 (Fall)
Quantitative Biology Seminar 1

Instructors: F. Guichard (Co-ordinator) W3/3 398-6464 frederic.guichard@mcgill.ca
 J. Vogel Bellini 269 398-5880 jackie.vogel@mcgill.ca

Workload: 1 credit (1-0-2)

Prerequisites: BIOL 200, CHEM 212, COMP 250, MATH 222 and PHYS 230

Restrictions: Registration is restricted to U2 students in the Quantitative Biology program and the joint programs in Biology and Mathematics and in Biology and Computer Science.

Content: This course provides an overview of concepts and current research in quantitative biology: theoretical ecology and evolution, computational biology, and physical biology. BIOL 395 runs concurrently with BIOL 495 (cross-listed courses).

Readings: Research papers and reviews will be assigned by participating faculty

Method: One hour seminar a week

Evaluation: Based on attendance and class participation

BIOL 396
(Fall, Winter or Summer)
Undergraduate Research Project

Instructor: Any staff member of the Biology Department

Coordinator: N. Nelson W3/25 398-4109 nancy.nelson@mcgill.ca

Restrictions: This course cannot be taken under the S/U option, and must be elective credits. Students cannot be supervised by the instructor for two 396 Science courses. Open to students in programs offered by the Faculty of Science only. Not open to Biology students.

Content and Procedures: Independent research project with a final written report worth at least 50% of the total grade. See http://www.mcgill.ca/science/ours for more information about available projects and application forms and procedures.

Cannot be taken under the S/U option
BIOL 413 (Fall, Winter, Summer)
Directed Reading (1 credit)

Instructor: Any staff member of the Biology Department.

Coordinator: N. Nelson W3/25 398-4109 nancy.nelson@mcgill.ca

Prerequisites: BIOL 200, 201 or ANAT 212/BIOC 212, 202, 205, 215. Registration form is required as for the Independent Study courses.

Content: Special topics paper under the guidance of a staff member of the Biology Department. The course presents the opportunity to improve scientific writing skills and to ease compliance with the number of credits required for graduation. See http://biology.mcgill.ca/undergrad/res_opps.html, for application forms and Suggested Criteria.

Method: Review written in scientific format.

Cannot be taken under the S/U option

BIOL 416 (Winter)
Genetics of Mammalian Development

Instructors: T. Taketo MUHC-RI GLEN EMO 3220 934-1934x34197 teruko.taketo@mcgill.ca
D. Dufort MUHC-RI GLEN EMO 3220 934-1934x34743 daniel.dufort@mcgill.ca
& Staff

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 202, 300, 303 or permission.

Content: This course aims to examine problems, theories, and experimental evidence on several concepts of mammalian developmental processes at molecular to organogenesis levels. Most topics are in the mouse model system, where various techniques for genetic manipulation are available.

1) Introduction and general overview (1 lecture)

2) Topics (selected from the following)
 Cell lineage establishment
 Implantation
 Body axis establishment
 Organogenesis
 Gametogenesis
 Non-Mendelian gene transmission

Readings: Selected research articles.

Method: Each topic (total 4-6 topics) will be covered by an introductory overview by the coordinator (or invited lecturer), presentation of recent articles by students, and research seminars. Students will be encouraged to come up with questions to stimulate the
discussion. Students are expected to either present or write a critique on an article on four topics of choice.

Evaluation: Students will be evaluated on the basis of participation and discussion, presentations, and critiques.

BIOL 418 (Fall)
Freshwater Invertebrate Ecology
(given in alternate years; not offered in 2016-2017)

Instructor: A. Ricciardi
Redpath Museum
398-4089
tony.ricciardi@mcgill.ca

Workload: 3 credits (2-3-4)

Prerequisites: BIOL 205; BIOL 215 or both ENVR 200 and ENVR 202; or permission of the instructor.
Enrolment is limited to 25 students.

Content: This course explores the life history and ecology of freshwater invertebrates in lakes, rivers and wetlands. It will focus on their habitat requirements, functional ecology and food web interactions. We will also examine how invertebrates affect the functioning of aquatic ecosystems, and how their diversity is threatened by human activities.

Lectures – The course will begin by exploring the special features of freshwater habitats, the major distinctions between freshwater and marine invertebrates, the constraints of living in a freshwater environment, and general patterns of freshwater biodiversity and zoogeography. The next series of lectures will examine invertebrate life cycles, food web interactions, and the faunal groups that characterize various types of freshwater habitats. Emphasis will be placed on the adaptations and functional ecology of invertebrates in different habitats, while introducing concepts such as functional feeding guilds and the river continuum. The final series of lectures will examine the role of anthropogenic stressors as threats to freshwater invertebrate diversity, and the value of invertebrates as sentinels of environmental change.

Labs – The labs will demonstrate techniques of identification of major invertebrate groups, using both preserved and living specimens. The final lab will familiarize students with the use of invertebrate data in biomonitoring and environmental assessment. A field sampling trip may be scheduled for the second or third week.

Readings: Selected journal articles will be posted on the course web site.

Method: Two 1hr lectures per week and one 3hr lab session per week.

Evaluation: Midterm exam, Lab exam, Final exam
BIOL 427 (Fall)
Herpetology
(Given in alternate years; not offered in 2016-2017)

Instructor: D. M. Green Redpath Museum 398-4086x4088 david.m.green@mcgill.ca

Workload: 3 credits (2-3-4)

Prerequisite: BIOL 205 and BIOL 305 or permission of instructor

Restriction: Those who have taken BIOL 327 cannot take BIOL 427

Content: This course considers the evolution and diversity of amphibians and reptiles, emphasizing detailed discussions of aspects that illustrate general principles of organismal and evolutionary biology. As such, the course explores the evolution and diversity of amphibians and reptiles (origins and phylogeny; diversity and systematics of extinct and modern forms), reproduction (development, metamorphosis, neoteny; phenotypic plasticity), communication and social behaviour (Vocalizations, acoustic communication, sensory systems, reproductive behaviour, social behaviour and parental care), physiology (hibernation and cold tolerance; venoms and toxicology, defensive strategies), biomechanics (jaw mechanics; Locomotion, limblessness, arboreality, fossorial life, swimming), genetics (sex determination; Parthenogenesis and hybridization) and ecology (predator/prey relations, population ecology, conservation and endangered species. The laboratories emphasize structure and identification of representative forms, especially local and North American species.

Independent readings.

Method: Two lectures, one laboratory per week. One field trip.

Evaluation: One final examination and quizzes on lecture material; one final laboratory examination. Students will also be graded on an essay which will include its presentation as a seminar.

This course is video-conferenced to the Mac Campus
BIOL 428 (Winter)
Biological Diversity in Africa
(Part of the Africa Field Semester)

Instructor: TBA
Workload: 3 credits
Prerequisites: BIOL 305 or equivalent, or permission of instructor
Co-requisites: BIOL/NRSC 451 and ANTH/GEOG 451
Restriction: Not open to those students who have taken BIOL 328

Content: This course deals in depth with biological diversity as exemplified by one or more taxonomic groups of organisms in Africa that are the specialities of particular instructors. As such, it will be a course in field herpetology, ornithology, mammalogy, ichthyology, entomology, invertebrate zoology and/or botany. It is taught at a series of locations in Uganda, Kenya and/or Tanzania taking advantage of a variety of physical locations and ecosystems to impart practical training in species identification and field research. Biological principles embodied in the organisms concerned will also be discussed. Specific lecture topics may include, as appropriate, evolution, diversity, systematics, reproduction, communication, social behaviour, physiology, biomechanics, genetics, and/or conservation biology. Numerous field exercises will introduce students to the indigenous biota, local habitats and field research methods. Students must register for the Africa Field Study Semester.

Readings: Text and independent readings as assigned by the instructor.

Method: Daily lectures and field exercises, together totaling at least 60 hours, over a three-week period in East Africa.

Evaluation: Depending upon the instructor(s), may include a field project report, participation in field work, seminar and/or one mid-term and one final examination on lecture material.
BIOL 429 (Winter)
East African Ecology
(Part of the Africa Field Semester)

Instructor: L. Chapman N3/12A 398-6431 lauren.chapman@mcgill.ca

Workload: 3 credits

Prerequisites: BIOL 215 or equivalents

Co-requisites: BIOL/NRSC 451 and ANTH/GEOG 451

Restrictions: Not open to those students who have taken BIOL 329

Content: This course deals in detail with aspects of ecology particularly pertinent to East Africa and conservation of biological diversity in the region at the discretion of the instructor. The course uses field settings to impart training in ecological principles critical to tropical conservation with an emphasis on research design and field research exercises. It is taught at a series of locations in Uganda and/or Kenya taking advantage of the variety of physical locations and ecosystems in the region to facilitate practical experience using real-world examples. Specific lecture topics may include, as appropriate, ecological diversity, community composition, ecosystem structure and maintenance, trophic dynamics, and conservation biology with an emphasis on ecosystems of East Africa. Numerous field exercises will introduce students to local ecosystems, local biodiversity, and field research methods. Students must register for the Africa Field Study Semester.

Readings: Independent readings as assigned by the instructor.

Method: Daily lectures and field exercises, together totaling at least 60 hours, over a three to four week period in Uganda and/or Kenya.

Evaluation: Depending upon the instructor, may include a field project report, participation in field work, seminar and/or one mid-term and one final examination based on lecture material.
BIOL 432 (Fall)
Limnology
Two weekend Field Trips

Instructor: I. Gregory-Eaves (Coordinator) W6/5 398-6425 irene.gregory-eaves@mcgill.ca
G. Fussmann W6/4 398-1370 gregor.fussmann@mcgill.ca

Workload: 3 credits (2-3-4)
Prerequisite: BIOL 206 and BIOL 215 or permission of instructor.
Restriction: ENVB 432

Content: Limnology is the study of inland waters: lakes, rivers and wetlands. Wetzel (2001) defines limnology as “the study of structural and functional interrelationships of organisms of inland waters as they are affected by their dynamic physical, chemical and biotic environment”.

For this class, we will provide students with an introduction to lake communities and the physical and chemical properties of their environment. Rivers and wetlands will be covered only briefly, but students may choose to do their independent projects on these systems. Topics covered during the class will include the watershed and its hydrology; fluxes of nutrients and materials to and within lakes; the pelagial and littoral zones and their dynamics; sediments and paleolimnology, and the structure and dynamics of major plant and animal communities. Interwoven will be lectures on nutrient and heavy metal pollution.

There are two mandatory weekend field trips in this course (in lieu of a lab). All students must attend these two field trips in September/October which will start at 5 pm on Friday and end at 5 pm on Sunday. An additional fee will be charged to cover the accommodation and transportation (this course cost is in addition to the regular course fee scheduled by McGill University). As a final requirement, students must be able to swim, as we will spend a fair amount of time working off of boats. See the web site for application procedures and more detail: http://www.biology.mcgill.ca/undergrad/c432

Reserve readings include: *Limnology* by R.G. Wetzel (Academic Press, 2007),

Method: The topics will be covered in twice-weekly lectures and 2 weekend field trips

Evaluation: Midterm, final exam, field project proposal, field project oral report and field participation
BIOL 434 (Winter)
Theoretical Ecology

(Not offered in 2016-2017)

Instructor: F. Guichard W3/3 398-6464 frederic.guichard@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 308 or BIOL 309 or permission of instructor

Content: This course is intended for advanced undergraduate students at the 400 level. It aims to provide them with a strong general background in theoretical ecology to enable them to follow more specialized courses at the 500 and 600 levels. Lectures will cover major theoretical issues, concepts and models in ecology and the mathematical tools to analyze them. Readings and paper discussions will focus on theories that have influenced ecology historically, or that are currently under debate. Topics and methods covered include:

- Density-independent growth, projection matrices, eigenvalues and eigenvectors
- Density-dependent growth, equilibria, limit cycles, and chaos in simple nonlinear systems
- Competition and coexistence, graphical analysis and global stability of nonlinear systems
- Dynamics of prey-predator and exploitation interactions, mathematical analysis of local stability in nonlinear systems, continuous and discrete-time models
- Species diversity, deterministic and stochastic models of species abundance patterns
- Spatial dynamics, spatial heterogeneity and coexistence, reaction-diffusion models
- Temporal variability and non-equilibrium coexistence, time-varying dynamical systems
- Direct and indirect interactions in ecosystems, community and inverse community matrices
- Energy and material flows in ecosystems, compartment models, mass-balance constraints
- Evolutionary ecology, adaptive dynamics, game theory, evolutionary stable strategies

Method: 3 hours lecture and discussion

Evaluation: Essay; midterm exam; final exam
Biology 436 (Fall)
Evolution and Society

Instructors: E. Abouheif (Coordinator) N3/6 398-7190 ehab.abouheif@mcgill.ca
S. Reader W3/14A 398-6421 simon.reader@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 304 or permission of the instructor

Content: Explores the impact that biological evolution and evolutionary thinking has on society. Topics covered include intelligence, language, race, gender, medicine, genetically modified organisms, politics, and creationism. We will introduce each topic and lead discussion, while an invited lecturer will focus on a particular aspect of that topic.

Evolution and Culture:
Lecture 1: Approaches to studying evolution and culture
Lecture 2: in Evolutionary theory: recent advances and challenges

Evolution and Politics
Lecture 1: Introduction: Eugenics, Lysenko’s regime during Stalin’s reign, imperialism
Lecture 2: Presentation by guest lecturer (TBA)
Lecture 3: Discussion and debate

Evolution of the Intelligence and the Brain:
Lecture 1: Introduction: genes, brain size, and intelligence
Lecture 2: Presentation by guest lecturer (TBA)
Lecture 3: Discussion and debate

Evolution of the Language and the Brain:
Lecture 1: Introduction: Cerebral cortical plasticity and the evolution of speech
Lecture 2: Presentation by guest lecturer (TBA)
Lecture 3: Discussion and debate

Evolution and Race:
Lecture 1: Introduction: Defining race, the origins of phenotypic differences between populations, present state of the race concept
Lecture 2: Presentation by guest lecturer (TBA)
Lecture 3: Discussion and debate

Evolution and Medicine
Lecture 1: Introduction: Evolution of infectious diseases and genetic diseases, racial medicine
Lecture 2: Presentation by guest lecturer (TBA)
Lecture 3: Discussion and debate

Evolution and Gender
Lecture 1: Introduction: Sexual selection theory and its implications for humans
Lecture 2: Presentation by guest lecturer (TBA)
Lecture 3: Discussion and debate

Evolution and Genetically Modified Organisms
Lecture 1: Introduction: The limits of artificial selection: wiener dogs and broccoli; biological and ethical problems and benefits of GMOs
Lecture 2: Presentation by guest lecturer (TBA)
Lecture 3: Debate and Discussion
Evolution and Religion
Lecture 1: Introduction: Creationism and evolution, evolution of religion
Lecture 2: Presentation by guest lecturer (TBA)
Lecture 3: Discussion and debate

Evolution and the Future of Humanity
Final lecture: Overview, summary, and discussion

Readings: Assigned readings for each topic.

Method: Each topic will be examined over three class periods. During the first period the professor will present a lecture introducing the material. The next meeting will host an expert from the McGill community who will present an in depth analysis of one aspect of the topic. Finally, the third period will be devoted to a guided discussion of the material presented in the first two periods.

Evaluation: *Summary presentation* – will be based on role-playing presentations of the problems discussed in the previous two lectures. Role-playing presentations are meant to both summarize key aspects of the content of the two previous lectures, as well as raise several “controversial points of discussion” in order to spark debate and discussion among the students. The criteria for how these role-playing presentations will be graded will be given to the students at the beginning of the course, and the students will receive feedback on their performance shortly after the discussion.

Participation in Discussions: We expect that students will be prepared for the discussion periods by the take home assignments (see below), and that the summary presentations at the beginning of these periods will serve as a catalyst to ignite the discussions. Marks will be accorded for evidence that the students are using lecture material to inform and advance their arguments. Students will be given feedback on their performance several times during the term. This feedback will include advice on improving performance where necessary.

Take home assignments: these will be given after each guest lecturer has spoken. Thus, there will be seven assignments over the term. The students will be asked to summarize the previous two lectures on a particular topic, highlighting those elements of the presentations that they think are cardinal in understanding the topic. In addition, they will be given a list of questions related to the topic, of which they will choose one to answer in a short essay. The students are encouraged to discuss their questions with each other. The assignments will be due on the day of the discussion period for the topic.

Term Paper: topics for the term paper will be chosen from a list provided by the professors.
BIOL 441 (Winter)
Biological Oceanography
(not offered in 2016-2017)

Instructor: N. Price N6/12 398-6468 neil.price@mcgill.ca

Workload: 3 credits (2-3-4)

Prerequisites: BIOL 206, BIOL 215 or both ENVR 200 and ENVR 202. Enrolment limited.

Content: The course examines aspects of plankton biology and ecology, emphasizing small-scale (physiological/biochemical) and large-scale (ocean basin/global) processes. The unifying theme of the lectures and lab exercises is the control and fate of production in the sea. The course will provide the student with an understanding of the structure and function of pelagic marine ecosystems.

Readings: Course pack and laboratory manual.

Method: Lectures and laboratories.

Evaluation: Final exam, labs and term paper.

BIOL 451 (Winter)
Research in Ecology and Development in Africa
(Part of the African Field Studies Semester, AFSS)
(not offered in 2016-2017; offered as NRSC 451 in 2016-2017)

Instructors: L. Chapman N3/12A 398 6431 lauren.chapman@mcgill.ca & Staff

Workload: 3 credits

Co-requisite: ANTH 451 or GEOG 451

Restriction: Not open to students who are taking or have taken NRSC 451

Content: This course contributes to the core curriculum for students participating in the African Field Studies Semester. The course focuses on development of observation and independent inquiry skills in the areas of ecology and development in Africa through: participation in short-term project modules in collaboration with existing researchers; participation in interdisciplinary team research on topics selected to allow comparative analysis of field sites; active and systematic observation, documentation, and integration of field experience in ecology and development issues. Students must register for the African Field Studies Semester.

Readings: Independent readings as assigned by instructor.

Methods: Lectures at field sites, interdisciplinary research (group projects), field exercises, field observation records.
Evaluations: Research project, module assignments, and field observation records and participation.

BIOL 465 (Fall)
Conservation Biology

Instructor:
L. Chapman (Co-ordinator) N3/12A 398-6431 lauren.chapman@mcgill.ca
F. Guichard W3/3 398-6464 frederic.guichard@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisite: BIOL 215 or both ENVR 200 and ENVR 202

Content: Conservation biology deals with the impoverishment of biodiversity through human related activities. As such, students in this course will be exposed to the pattern of biological processes involved in changes in biodiversity, and current examples of biodiversity loss. The course will focus on the key biological concepts that relate to conservation biology. The course will define diversity, review how diversity is lost and consider important genetic and demographic attributes of populations that make them more or less susceptible to extinctions. The structure and stability of multi-species communities, including the effects of the removal or introduction of species, and other perturbations upon community dynamics will be taught. Specific issues as population viability analysis, fragmented habitats, the effect of introduced or exotic species, and restoration ecology will be presented. Each of these biological topics will be discussed to the extent that they relate to conservation and help in formulating solutions towards reducing the loss of biodiversity. The course will also examine the importance of non-biological disciplines such as ethics, anthropology and history on conservation action. Guest speakers will cover complementary issues.

Readings: Selected journal articles, review papers. The text "Conservation Biology for All" (Sodhi & Ehrlich, editors), Oxford University Press, 2011, is suggested but not required,

Method: Two 1.5 hour lectures per week

Evaluation: Two individual assignments; one group project, final exam
BIOL 466 and BIOL 467 (3 credits each)
(Fall, Winter or Summer)
Independent Research Project 1 and Independent Research Project 2

Instructors: Any staff member of the Biology Department

Coordinator: N. Nelson
W3/25 398-4109 nancy.nelson@mcgill.ca

Workload: 3 credits (0-0-9)

Prerequisites: BIOL 206 or 301, or other suitable -300-level laboratory course. Open to U3 Biology students. All projects have to be arranged with individual instructors of the Biology Department. Honours Biology students may include a maximum of 6 credits of independent research as complementary credits. Liberal and Major Biology students may include a maximum of 9 credits of independent research as complementary courses. A form, available online at http://biology.mcgill.ca/undergrad/res_opps.html, must be completed and returned to Nancy Nelson in W3/25 at the beginning of the term in order to register for these courses on Minerva.

Content: Projects to be carried out independently by students under the guidance of individual staff members. The projects will include experimental work with exposure to published data and theories. Emphasis is on acquisition of skills in technique, analysis, and communication in the process of generating a scientific report. Students interested in Independent Studies should consult "Guidelines for Independent Studies", available at http://biology.mcgill.ca/undergrad/res_opps.html. Students are expected to work a minimum of 9 hours per week for 13 weeks on the project.

Evaluation: The full-time or affiliated staff member of the Biology Department supervising the project evaluates the overall performance in the various stages of the project, including the final written report. Work performed and the report will receive separate marks summarized in a final mark with weighting (70/30, 60/40, 50/50) at the discretion of the supervisor. One copy of the marked report must be submitted electronically to nancy.nelson@mcgill.ca.

Cannot be taken under the S/U option

BIOL 468 (Fall, Winter or Summer)
Independent Research Project 3 (6 credits)

Instructor(s): Any staff member of the Biology Department.

Coordinator: N. Nelson
W3/25 398-4109 nancy.nelson@mcgill.ca

For course details see Biology BIOL 466.
Cannot be taken under the S/U option

BIOL 469 D1/D2 (Fall and Winter)
Independent Research Project 4 (9 credits)

Instructor(s): Any staff member of the Biology Department.

Coordinator: N. Nelson
W3/25 398-4109 nancy.nelson@mcgill.ca
BIOL 479 D1/D2 (Fall and Winter) Honours Research Project 1 (9 credits) and BIOL 480 D1/D2 (Fall and Winter) Honours Research Project 2 (12 credits)

Instructors: TBA (Director)
& Staff
N. Nelson (Advisor) W3/25 398-4109 nancy.nelson@mcgill.ca

Procedures & Prerequisites: Restricted to U3 students in the Biology Honours Program. Projects must be arranged individually with and accepted by a staff member of the Biology Department. Students must email the Honours Advisor their intent by June 1 of the year prior to the final year. The proposed supervisor must also email acceptance of the student. A completed application form available on the web: http://biology.mcgill.ca/undergrad/honours/index.htm and an Abstract must be submitted to the Honours Director and Advisor by the first week of September. Applications should, therefore, be considered as competitive. A research proposal must be submitted by October 15. The proposal will be reviewed by the student’s Honours Committee member(s), an instructor in the student’s field of study. The major objective of the course is to provide an introduction to the design, execution and reporting of research. The number of projects that can be handled is limited and their quality will be examined carefully.

Content: These courses are intended to allow students to obtain in-depth training in their major field of interest. Programs of independent study pursued under these course numbers will usually consist of a project and include preparatory reading and a comprehensive written report and an oral presentation.

Evaluation: On overall performance in the various parts of the program. Evaluation will be the responsibility of the supervisor in consultation with the member(s) of the supervisory committee.
BIOL 495 (Fall)
Quantitative Biology Seminar 2

Instructors: F. Guichard (Co-ordinator) W3/3 398-6464 frederic.guichard@mcgill.ca
 J. Vogel Bellini 269 398-5880 jackie.vogel@mcgill.ca

Workload: 1 credit (1-0-2)

Prerequisites: BIOL 395

Restrictions: Registration is restricted to U3 students in the Quantitative Biology program and the joint programs in Biology and Mathematics and in Biology and Computer Science.

Content: This course provides an overview of concepts and current research in quantitative biology: theoretical ecology and evolution, computational biology, and physical biology. BIOL 395 runs concurrently with BIOL 495 (cross-listed courses).

Readings: Research papers and reviews will be assigned by participating faculty

Method: One hour seminar a week

Evaluation: Presentations, attendance and class participation

BIOL 499 D1/D2 (Fall and Winter)
Honours Seminar in Biology (4 credits)

Instructors: TBA & Staff

Prerequisites: Acceptance to U3 Honours Program.

Content: The aim of this course is two-fold: on the one hand it is intended to further interest in a wide range of biological topics, and on the other to promote acquaintance with recent advances and research techniques in a chosen area of concentration. Students also participate in a “scientific writing” module

Readings: Research papers.

Method: All students will attend 6 guest speaker seminars designated "honours seminars" by the Honours Director. For each seminar the students will read research articles in advance, participate in discussion with the speaker and prepare a written summary of the talk. In April the students will organize a symposium and present their own research data

Evaluation: Participation in discussion and written summaries (3 credits) and quality of presentation in the conference (1 credit).
BIOL 507 (Fall)
Animal Communication

Instructors: Jon Sakata (Coordinator) N4/8 398-3636 jon.sakata@mcgill.ca
R. Krahe W3/23A 398-8065 rudiger.krahe@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites/Co-requisites: Students should have taken or be currently enrolled in a course in introductory neurobiology (e.g. BIOL 306 or NEUR 310 or NSCI 200 or NSCI 201 or PHGY 311) and a course in Behavioural Ecology (e.g. BIOL 307). Since all co-requisites may not be offered in the same term, students are advised that they may have to plan their schedules so that they register in these courses in the term prior to BIOL 507. Or students may enroll with the permission of instructor. Enrolment is limited.

Content: This course provides an introduction to communication between animals. We will discuss the basic setup of communication systems, but also take a close look at the physical and historical constraints shaping the production and reception of communication signals. The course will cover the relevant physics of communication as well as sensory physiology and the physiology of signal production. Examples will be drawn from all major communication channels. Specifically, we will study acoustic, vibrational, visual, chemical, and electrical communication in a variety of animals (including humans) and contexts (courtship, aggression, predator evasion). Emphasis will be laid on the evolution of communication systems. Discussion will include the neural systems underlying human language and the relationship between human language and communication systems of other animals.

Method: A set of lectures will introduce basic aspects of animal communication and its evolution. Each student will present an original research article from the recent literature and will write a review paper on a current topic in animal communication research.

Evaluation: Discussion contributions, assignments on myCourses related to articles covered in student presentations, presentation of original research article, term paper.
BIOL 509 (Winter)
Methods in Molecular Ecology

Instructors:
M. Cristescu (Coordinator) N6/1 398-1053 melania.cristescu@mcgill.ca
D. Schoen N3/8A 398-6461 daniel.schoen@mcgill.ca

Workload:
3 credits (1.5-2.5-5)

Prerequisites:
BIOL 301, BIOL 304 and BIOL 308 or permission of instructor

Content:
An overview of the molecular genetic tools used to investigate ecological and evolutionary processes in natural populations. The use of molecular tools in studies of population structure, parentage, kinship, species boundaries, phylogenetics. Special topics include conservation genetics, population genetics, and ecological genomics.

Reading:
Additional reading will also be assigned from primary literature
Additional recommended reading:

Evaluation:
Grades will be based on: student presentation, participation to class discussions, lab assignments and research project.

Student presentations: Students will prepare a 20-25 minute presentation on a relevant Molecular Ecology topic. A list of relevant topics will be provided to students.

Lab assignments: Students will submit a lab assignment at the end of each lab. While students are encouraged to work in pairs and help each other, assignments are to be completed and submitted individually.

Research project: An individual research project based on a novel analysis of published data, or student’s data will be conducted during the semester. The project should coincide with the interest of the student. Students will be able to apply the methods covered during the lab exercises to their own dataset and project.
BIOL 510 (Fall)
Advances in Community Ecology
(Alternating course; Not offered in 2016-2017)

Instructor: A. Gonzalez N3/2 398-6444 andrew.gonzalez@mcgill.ca

Workload: 3 credits (2-1-6)

Prerequisites: BIOL 308 or GEOG 350 or permission of instructor

Content: "Ecology is the science of communities. A study of the relation of a single species to the environment conceived without reference to communities and, in the end, unrelated to the natural phenomena of its habitat and community associations is not properly included in the field of ecology" (Shelford 1929).

We will cover the central concepts in community ecology organized around three major themes:
1. Maintenance of biodiversity at local and regional scales
2. Historical and phylogenetic perspectives
3. Ecological networks: food webs, mutualisms and metacommunities

Particular emphasis will be placed on the principal theories, their historical development, and the observational and experimental support for them. By the end of the course the student will have a broad appreciation of current knowledge in community ecology.

Readings: Although not an official course text, selected chapters from R. E. Ricklefs and D. Schluter (1993) *Species Diversity in Ecological Communities* (Chicago Press) will be read. Readings from the primary literature will be provided throughout to address topics not covered by the text.

Method: Weekly, 1.5-hour lecture and discussion and 1.5-hour seminar for paper discussion.

Evaluation: Class participation, 3 short essay assignments, 1 oral presentation
BIOL 514 (Fall)
Neurobiology of Learning and Memory
(Cross-listed with PSYC 514)

Instructors: K. Nader Psychology Dept 514-398-3511 karim.nader@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 306 or NEUR 310 or NSCI 201 or PHGY 311 or permission of instructor. Enrolment limited to 16 students

Restrictions: PSYC 514

Content: Properties of nerve cells that are responsible for learning and memory. Recent advances in the understanding of neurophysiological, biochemical and structural processes relevant to neural plasticity in adult animals. Emphasis on a few selected model systems involving both vertebrate and invertebrate species.

Topics to be covered include the following:

1) Electrophysiology of synaptic plasticity, principally long-term potentiation (LTP) and long-term depression (LTD). Events that induce synaptic modifications; hebbian synapses; mechanisms that change synaptic strength; metaplasticity.

2) Intracellular signaling pathways. Ions, kinases, transcription factors and other molecules that mediate changes in synaptic transmission.

3) Memory consolidation and reconsolidation. Why some memories quickly fade and other memories can last a lifetime. Gene expression; receptor trafficking

4) Morphological plasticity. Do memories require the growth of existing synapses, the generation of new synapses, changes in dendritic structure or the appearance of new neurons?

5) Specificity of learning. How certain synapses can be modified by stimuli while other synapses on the same postsynaptic cell remain unaffected.

6) Memory deficits, memory changes and memory enhancement; commercial and medical applications.

Method: Students are expected to have read the articles before class and to be prepared for a critical discussion in class.

Readings: There is no text. Articles for discussion are posted on Web CT.

Evaluation: Participation in discussion, written assignment, final presentation
BIOL 515 (Winter)
Advances in Aquatic Ecology
(Given in alternating years; not offered in 2016-2017)

Instructor: I. Gregory-Eaves
W6/5 398-6425 irene.gregory-eaves@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 432 or BIOL 441 or permission of the instructor. Enrolment in this course is limited.

Content: This course is designed to allow senior undergraduate and graduate students to become intimately acquainted with the key primary literature in aquatic ecology and the major issues challenging the field, while also stimulating them to develop their own ideas on how to overcome these and expand the discipline. There are four main exercises in the course:
1) a student-led discussion of primary literature; 2) a critical review; 3) a meta-analysis, and 4) a grant proposal. These exercises are designed to encourage independent thinking, to give students an appreciation of how different types of investigations are initiated, how innovative approaches emerge, and how novel theoretical concepts are synthesized in the area of aquatic ecology.

1) Student-led paper discussions.
The students will discuss a pair of papers, one of which will be among the most highly cited papers on this topic and the second of which will be of approximately the same vintage and contain interesting approaches or findings but will have had more modest citations.

2) A critical review (oral presentation and abstract).
Students should critically analyze a paper by addressing its strengths and weaknesses, asking what questions remain unanswered and how additional questions might be addressed. Students should also take a historical view to the critique by developing an appreciation of the studies which formed the foundations of the paper in question. A 250-word abstract should also be prepared summarizing the above points. Class members are expected to read the focal paper and abstract such that they can participate actively in the class discussion.

3) Meta-analysis (oral presentation and extended abstract)
The literature regarding many basic questions in aquatic ecology is full of similar studies that have reported small – moderate effects, but often there is no quantitative synthesis (aka meta-analysis) to identify a general pattern. Students will be given a background in meta-analyses in the form of a lecture and background readings. For the meta-analyses assignment, each student will be responsible for identifying a topic, conducting an appropriate meta-analysis of the available literature and presenting this analysis to the class orally. Students are also expected to develop a two-page extended abstract, which will allow fellow class members to prepare to participate in the discussion.

4) Grant proposal (oral presentation and abstract)
Identifying exciting new avenues for research and building on existing literature is a major activity of any research scientist. The goal of this exercise is to build on our earlier discussions identifying emerging areas of research and understanding what makes for a successful project. This grant proposal project will be conducted in two steps. During week 6 of the course, each student will submit a one page letter of intent that clearly outlines their question, set in the context of existing literature, and provides some details regarding their approach (e.g. lab experiment, field experiment, and/or field survey). A week later, the students will receive feedback from the class grant panel such that they might further develop their ideas. In the last three weeks of the course, each student will give a presentation summarizing their grant proposals.

Readings: Readings from journal articles will be assigned

Additional recommended reading:
BIOL 518 (Winter)

Advanced Topics in Cell Biology

Instructors: P. Harrison (Coordinator) W3/15 398-6420 paul.harrison@mcgill.ca
R. Reyes Lamothe Bellini 271 398-5137 rodrigo.reyes@mcgill.ca

Workload: 3 credits (0-2-7)

Prerequisites: BIOL 313 or permission

Content: This course is for advanced undergraduate and graduate students. Readings are recent journal articles and reviews. Specific topics vary but typically include the cytoskeleton, noise in biological systems, cellular microenvironments, genome structure, membrane biology, cell signaling, large-scale analysis and/or bioinformatics, and innovative studies/techniques in cell biology. The course emphasizes conserved eukaryotic processes with a focus on model organisms.

Readings: Recent research papers and reviews.

Method: Faculty lectures will introduce each topic, followed by in-depth discussion of contemporary papers on that topic. Students participate actively in these discussions.

Evaluation: The course grade is based on an oral presentation, a research paper, participation and assignments. Since participation is a major part of the grade, missed classes will decrease your final grade.
BIOL 520 (Winter)

Gene Activity in Development

Instructor: R. Roy
W5/17
398-6437
richard.roy@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 300, 303, or permission of instructor.

Content: A critical examination of recent literature on the role and regulation of gene activity during development. The emphasis will be on molecular and genetic analyses. Topics will vary from year to year but are likely to include: transcriptional and post-transcriptional regulation of gene expression during cellular differentiation; analyses of factors and pathways involved in cell fate determination and patterning. These topics will be presented with emphasis on a few currently important developmental systems chosen from: insects (*Drosophila*), nematodes (*C. elegans*), non-mammalian vertebrates (*Xenopus/zebrafish*), mammals (mice), and plants (*Arabidopsis*).

Readings: Recent research papers and reviews.

Method: Discussions will be initially led by professor, but each student will lead one class as well during the term. Recent research papers will be discussed in class.

Evaluation: Students will be evaluated on the basis of their oral and written presentations and on course participation.

BIOL 524 (Fall)

Topics in Molecular Biology

Instructors: H. Clarke (Coordinator)
RVH
934-1934x34748
hugh.clarke@mcgill.ca

D. Dankort
Bellini 264
398-2307
david.dankort@mcgill.ca

Workload: 3 credits (0-2-7)

Prerequisites: BIOL 300 and 303 or equivalents or permission of the instructor. Enrolment is limited to 12 students.

Content: This seminar course will consider the most recent literature in the fields of molecular biology of development and cancer. Topics will be drawn from the genetics of model organisms and humans, cell biology, cell differentiation and development, and genetic diseases.

Readings: Research papers and recent reviews.

Method: Each student will present a seminar and lead the subsequent discussions of recent publications, present a one-hour seminar and lead the subsequent discussion. Students also submit written questions pertaining to the research papers being discussed at each seminar presentation and are expected to participate in the discussion of those papers. Each student also submits an end-of-term paper providing a critical evaluation of two papers that he or she has chosen from the literature and which are relevant to one of the topics presented in class.
Evaluation: The students will be graded on the quality of their presentations, the submitted questions for other presentations, their participation in group discussions and the end-of-term paper.

BIOL 530 (Winter)
Advances in Neuroethology

Instructor: S. Woolley (Coordinator) N4/8 398-3636 sarah.woolley@mcgill.ca
R. Krahe W3/20A 398-8065 rudiger.krahe@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 306 or NSCI 200 or NSCI 201 or PHGY 311 or permission of instructor.

Content: The course will consider the neural mechanisms underlying behaviour, focusing on specializations of neural circuits for particular behavioural functions. Specific topics will vary according to the current literature, but may include communication, visually guided behaviour, escape behaviour, orientation, neurogenetics of behaviour and locomotion.

Readings: Recent research articles and reviews.

Method: Each new topic will be introduced by a lecture, supplemented by assigned reading. The following classes will be devoted to student seminars and critical discussions of recent research articles.

Evaluation: Participation in discussions, presentation of an original research article, assignments on myCourses related to articles covered in student presentations, term paper.

BIOL 532 (Winter)
Developmental Neurobiology Seminar

Instructors:
D. Van Meyel (Co-ord.) MGH 934-1934x 42995 don.vanmeyel@mcgill.ca
A. Kania IRCM 987-5526 artur.kania@ircm.qc.ca
J-F. Cloutier MNI 398-6351 jf.cloutier@mcgill.ca
E. Ruthazer MNI 398-4022 edward.ruthazer@mcgill.ca
A. Fournier MNI 398-3154 alyson.fournier@mcgill.ca

Workload: 3 credits (1-2-6)

Prerequisites: BIOL 303 or 306, or permission of instructor.

Content: The development of the nervous system is examined with particular emphasis on the processes which underlie the appearance of complex but highly ordered neural circuits during embryonic development. Among the specific topics to be discussed are: neural induction and patterning, birthdays and migrations, the specification and diversification of neurons; axon guidance, target selection and topographic mapping; the influence of neuronal activity on CNS development, neurotrophic factors and neuronal cell death, synapse formation, stem cells, and CNS repair and regeneration. The course emphasizes the application of modern cellular and molecular approaches used to investigate these problems.

Readings: Assigned from the recent literature.
BIOL 540 (Winter)
Ecology of Species Invasions
(offered in 2016-2017)
(cross-listed with ENVR 540)

Instructor: A. Ricciardi, Redpath Museum, 398-4089 tony.ricciardi@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 308 or permission of instructor

Restrictions: Not open to students who have taken ENVR 540

Content: Exotic species invasions are increasing in frequency around the world. They are one of the leading threats to biodiversity, and can dramatically affect ecosystem processes, economic resources and human health. This course will explore the causes and consequences of invasion. Using concepts from population biology, community ecology and evolution, we will examine the reasons why some species are highly invasive and why some ecosystems are more vulnerable to invasion than others. We will also look at methods of risk assessment and management strategies for dealing with this global environmental problem.

Readings: Readings to be assigned.

Method: Three 1-hour lectures per week

Evaluation: Students will be evaluated based on assignments, a midterm exam, a research paper and a seminar.

BIOL 544 (Fall)
Genetic Basis of Life Span
(Given in alternate years; not offered in 2016-2017)

Instructor: S. Hekimi W5/29 398-6440 siegfried.hekimi@mcgill.ca

Workload: 3 credits (1-2-6)

Prerequisites: BIOL 202, 300 or permission; BIOL 303 recommended

Content: The course will consider how gene action is determining the duration of life in various organisms, focusing on the strengths and limitations of the genetic approach. The course will focus particularly on model organisms such as yeast, Caenorhabditis, Drosophila and mouse, as well as on the characterization of long-lived people.

Readings: Recent research articles and reviews. No textbook will be used.
Method: Each new topic will be introduced by the instructor. Classes will be devoted to student seminars and critical discussions of recent research articles.

Evaluation: One long oral presentation and participation in discussions.

Enrolment limited to 12 students

BIOL 546 (Fall)
Genetics of Model Systems
(Given in alternate years; not offered in 2016-2017)

Instructor: S. Hekimi W5/29 (514) 398-6440 siegfried.hekimi@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 202, 300 or permission; BIOL 303 recommended

Content: The course will provide an introduction to the genetics and molecular genetics of unicellular, plant, invertebrate and vertebrate model systems, including, among others, *E. coli*, yeast, *Arabidopsis, Caenorhabditis, Drosophila*, Zebra fish, and mice. We will examine the characteristics of each system, how the systems have been most successfully used (their advantages and disadvantages) and, using chosen topics, how findings with these systems are shaping our understanding of basic principles in the life sciences.

Readings: Recent research articles and reviews. No textbook will be used.

Method: Each new topic will be introduced by the instructor or an invited lecturer specialized in the use of the particular model system or topic. Classes will be devoted to student seminars and critical discussions of recent research articles.

Evaluation: One long oral presentation and participation in discussions.

BIOL 551 (Winter)
Principles of Cellular Control

Instructor: J. Vogel Bellini 269 398-5880 jackie.vogel@mcgill.ca

Staff

Workload: 3 credits (3-0-6)

Prerequisites: CHEM 115 or 120; MATH 133 and 141; PHYS 142; or equivalents; BIOL 201 or ANAT/BIOC 212. COMP 202, PHYS 230 and BIOL/PHYS 319 are recommended

Content: This course attempts to overview fundamental principles of cellular control. Cell cycle control is a major theme. Biological and physical concepts will be brought to bear on control systems in healthy cells, largely based in studies using model organisms. Concepts are related to human cells with relevance to disease (cancer), but disease and cancer are not a focus of this course. It should be remembered that understanding what constitutes a healthy system, and how that state is maintained, is just as critical as understanding the basis of disease. This course is designed with the understanding that students come from
both the biological/biomedical sciences and physical sciences and thus the material covered must be accessible to all regardless of their background.

Topics include
- Signalling
- Switches, thresholds in biological systems
- Oscillators
- Methods of analysis

Readings: Assigned readings are primarily research articles and reviews. Readings from Physical Biology of the Cell (PBoC) will be posted on myCourses. *Cell Cycle: Principles of Control* (POC; Morgan, Sinauer press) is a general review for cell cycle concepts. An online version of *Molecular Biology of the Cell* is available through PubMed and is recommended as a general cell biology reference. *POC* and *PBoC* are available through the Life Sciences library.

Method: Faculty lectures and student presentations Two 1.5 hr sessions per week

Evaluation: Assignments, project, presentation and participation.

BIOL 553 (Winter)

Neotropical Environment (3 credits)

Winter Term in Panama

Instructor: C. Potvin W6/8 398-3730 catherine.potvin@mcgill.ca

Prerequisite: Spanish Language Elementary HISP 218 or equivalent, Principles of Statistics MATH 203 or equivalent, BIOL 215 or both ENVR 200 and ENVR 202, and permission of Panama program coordinator.

Co-requisite: ENVR 451 (Research in Panama), HIST 510 (Environmental History of Latin America) and GEOG 404 (Environmental Management 2)

Restriction: This course is limited to those students taking the full Field Study Semester in Panama. (See page 132)

Content: This course is taught over three weeks in January at the Smithsonian Tropical Research Institute (STRI) in Panama. Students study tropical ecology and species richness through field trips. These excursions develop an understanding of the challenges of sampling and measuring biodiversity in species rich areas. Ecological theory and methodology is revisited in view of tropical conditions. The course also documents the conservation status of ecosystems, communities and species in Panama. It ends with a workshop on indigenous knowledge.

Methods: The course is intensive and involves two continuous weeks of field work. Field-trips bring students in contact with forest canopy, semi-dry, cloud and mangrove forests.

Evaluation: Based on participation in field work, practical exercises and a diary.
BIOL 568 (Winter)
Topics on the Human Genome

Instructors: R. Slim (Coordinator) Mtl. Gen. Hospital 934-1934x44550 rima.slim@muhc.mcgill.ca
& Staff
R. Mackay (Administrator) N5/13 398-4190 ross.mackay@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 202, 300, 370 or permission of instructor.

Content: The course will cover genomic, molecular and cellular approaches to characterization of the human genome.

1. Genome technology and Next generation sequencing methods (1.5 hours).
2. Genome wide association studies including recent results (3 hours).
3. Large-scale data visualization and analysis, RNA and exome sequencing (4.5 hours).
4. Gene organization and regulation (6 hours).
5. DNA Methylation (history, introduction, approaches, and associated human diseases) (6 hours).
6. Genetic mosaicism and de novo mutations in human diseases (3 hours).
7. Genetics of cancer ontogeny (4.5 hours)
8. General developmental genetics and use of pluripotent stem cells (3 hours).
9. Ethical, Legal, and Social Aspects of Human Genomics Research (4.5 hours).

Readings: Selected journal articles.

Method: 3 hours lectures.

Evaluation: Mid-term and final exam

BIOL 569 (Winter)
Developmental Evolution
(given in alternate years; offered in 2016-2017)
Instructors:
H. Larsson (Coordinator) Redpath Museum 398-4086 x089457 hans.ce.larsson@mcgill.ca
E. Abouheif N3/6 398-7190 ehab.abouheif@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 303 and BIOL 304, or permission

Content:
This course is intended for advanced undergraduate and graduate students. Developmental Evolution (DE) examines the influence of developmental mechanisms on evolution. This course will focus on the emerging principles of DE, and will draw on data and examples from plants and invertebrate and vertebrate animals. The course will cover topics such as: homology, modularity, dissociation, co-option, evolutionary novelty, evolution of genetic cis-regulation, developmental constraint and evolvability, heterochrony, phenotypic and genotypic plasticity, and canalization to understand how development influences evolution.

Readings:
Recent research articles, reviews and current text addressing a timely theme in the field.

Method:
The course will follow a seminar style format, in which the instructors present key lectures throughout the course, followed by student group presentations and discussions of topics chosen by groups of students from a list of suggested topics. Each student will also write a scientific-format paper on a topic approved by the instructors. The paper may be a review of current issues or a presentation of a novel approach to issues in developmental evolution.

Evaluation:
Student presentations, scientific paper and class participation

BIOL 570 (Fall or Winter)
Advanced Seminar in Evolution (3 credits)
TBA

Instructor: TBA

Prerequisites: Open to undergraduates by permission of instructor.

Content:
Detailed analysis of a topic in evolutionary biology, involving substantial original research.

BIOL 573 (Summer)
Vertebrate Palaeontology Field Studies (3 credits)
Instructors: H. Larsson
Redpath Museum
398-4086 ext. 089457
hans.ce.larsson@mcgill.ca

Prerequisites: BIOL 304, BIOL 352, or permission of instructor.

Content: This course is intended for advanced undergraduate and graduate students. The primary objective for the course is to train students in collecting and analysis methods in vertebrate palaeontology. The course will be given at a selected Late Cretaceous (~70 million years old) locality in Alberta and/or Saskatchewan. Fieldwork will be conducted for approximately 18 days. During that time, students will have practical training with stratigraphic mapping, fossil prospection, identification and collecting. An emphasis will be placed on terrestrial vertebrate fossils (i.e. dinosaurs, crocodiles, and other reptiles) and palaeocommunity analysis.

Readings: Recent research articles and reviews. No textbook will be used.

Method: Two-week field course in August.

Evaluation: Based on results of an examination at the start of the course that tests understanding of preliminary readings, participation in field work, field book logs and discussions in the field.

Registration: Students should contact Prof. Larsson no later than April 1 to sign up for the course (15 slots first come first served) and receive an instruction sheet. The course fee is approximately $1000 but will vary slightly from year to year. It covers all personal expenses such as equipment, camping and museum fees, food, vehicle rentals and fuel, but not tuition or transportation to a designated Alberta/Saskatchewan meeting place. A minimum of 6 students is required for the course to be offered. Further information appears on notices in the Redpath Museum in February/March and on the course web site that can be accessed from Prof. Larsson’s home page. The latter can be reached via the Biology home page Faculty link.

BIOL 575 (Winter)
Human Biochemical Genetics

Instructors: N. Braverman (Coordinator)
Mtl Children’s Hospital
nancy.braverman@mcgill.ca

& Staff

R. Mackay (Administrator)
N5/13
398-4198
ross.mackay@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 202, 300 or permission.

Content: The science of genetics has allowed major advances into our understanding of the basis of human disease. This course touches on how the study of human systems has led to advances in basic biology. Topics to be covered include disorders of folate and cobalamin transport and metabolism, lysosomal storage disease, peroxisome disorders, genetics of lipoproteins and human disease, genetics of steroid receptors, genetics of collagen and mitochondrial disease.

Readings: Research and review articles selected from current literature.
Method: Two 1.5 hour lectures per week. In addition, 3-4 student groups will be established from the class and each will be responsible for giving presentations in areas related to the topics covered. Each presentation will be done during an allotted lecture time.

Evaluation: 1.5 hour mid-term; group presentations, 3 hour final

BIOL 580 (Fall)
Genetic Approaches to Neural Systems

Instructors: M. Hendricks (Coordinator) W5/11 398-6581 michael.hendricks@mcgill.ca
A. Watt Bellini 265 398-2806 alanna.watt@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 306 or NSCI 200 or NSCI 201 or PHGY 311 or permission of instructor.

Content: This course is an examination of recent research employing cutting-edge genetic tools to examine the functional and structural properties of the nervous system. The focus will be on genetic methods for studying neural circuits and behavior, in a range of model organisms. Topics will include recent technological advances, such as optogenetics for modifying and controlling neuronal activity, and animal models of neurological diseases. Students will critically analyze the application of these methods to current research through in-class discussion of primary literature, student presentations, and written assignments.

Readings: Recent research articles and reviews.

Method: Background lectures will be given on specific topics. The focus of the class will be on student presentations, discussion and critical evaluation of primary research articles.

Evaluation: Participation in discussions, presentation, term paper, assignments

BIOL 588 (Fall)
Instructors:
S. Carbonetto
MGH L7-121
934-1934x 44237
sal.carbonetto@mcgill.ca

K. Hastings
MNI
398-1852
ken.hastings@mcgill.ca

Workload: 3 credits (1.5-1.5-6)

Prerequisite: BIOL 300 and 306, or permission of instructor.

Content: The main objectives of the course are to expose final year neurobiology undergraduates and graduate students in neuroscience disciplines to:

1) Recently published studies in which molecular biological research methods have provided new insight into the role of specific genes and proteins in the nervous system.
2) The critical analysis of scientific research papers in an organized round table discussion setting.

The lecture topics vary somewhat from year to year but the following are almost certain to be covered in one form or another in each year: gene expression in the nervous system, gene and protein isoform families and alternative RNA splicing, membrane protein synthesis, neuronal growth factors, synaptogenesis, cell adhesion molecules/extracellular matrix, cytoskeleton, ion channels, signal transduction systems and molecular genetics of neurological mutants in man and experimental animals. Students develop skills in understanding and communicating scientific information.

Readings: There is no required textbook. A neuroscience text with a strong cell/molecular component, such as *Fundamental Neuroscience* (Zigmond et al, Academic Press) would be useful, as would a good cell/molecular biology text such as *Molecular Biology of the Cell* (Alberts et al, Garland Publishing) or *Molecular Cell Biology* (Lodish et al, W.H. Freeman & Co.).

Method: Following a short series of introductory lectures, the course consists of an alternating series of topic-focused lectures (Thursdays) and corresponding discussion sessions (Tuesdays). A recently published research article related to the lecture topic will be assigned, and the paper will be discussed in detail in the next discussion session. During discussion sessions students are asked to interpret specific Figures and Tables in the research articles in terms of experimental technique, conclusions drawn, and relevance to the overall point of the paper. Towards the end of the term the class has an informal meeting with a guest scientist who is an invited seminar speaker at the university and whose recent work they have already discussed as a group. Besides providing the investigator’s own viewpoint of specific neurobiology issues, this meeting is an opportunity to consider broader research issues including career development and the behind-the-scenes thinking and work that underlies published scientific papers.

Evaluation: Participation in discussion sessions counts for three-quarters of the grade. A class test will count for the remainder.
Integrated Bioinformatics

Instructors: P. Harrison W3/15 398-6420 paul.harrison@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 301 (or equivalent); or permission

Restriction: Not open to students who are taking, or have taken, BINF 511

Content: This course is an integrated overview of bioinformatics, primarily for biology students. We will cover a range of bioinformatics methods that are useful for the experimental biologist to aid in interpretation of data and experimental design. We will work through some specific examples, primarily using internet-based tools. The course is also useful as an introduction for students wishing to progress to further study in bioinformatics.

Topics will be as follows:
- Introduction to databases
- Basic tips for use of bioinformatics tools and manipulation of bioinformatics data on the computer.
- Sequence alignment and database searching for homologs.
- Gene annotations and how to interpret them; 'next-generation' sequencing data.
- Annotation of non-coding DNA: transposable elements, pseudogenes and RNAs.
- Comparing genomes
- Networks and pathways of proteins and genes
- Classifications of protein function and their use for analyzing data sets of genes/proteins.
- Annotating and examining features in proteins (protein domains, motifs, disordered regions)

Readings: List of papers, to be assigned during the course. Some documents supplementary to lecture slides will also be distributed.

Method: There are two 1.5 hour lecture, demonstration or discussion sessions per week. The demonstration sessions are for bioinformatics tools on the internet, or which can be installed on a computer. There are six short take-home assignments, based on the lecture material. Students are asked to make a 15-minute presentation on a bioinformatics paper that they can choose from a list provided, or which they can pick for themselves.

Evaluation: Assignments, presentation and class participation

BIOL 594 (Fall)
Advanced Evolutionary Ecology
(Offered in 2016-2017)

Instructor: A. Hendry Redpath Museum 398-4086 x0088 andrew.hendry@mcgill.ca

Workload: 3 credits (3-0-6)

Prerequisites: BIOL 304, BIOL 308 or permission

Content: Interactions between ecology and evolution, particularly as they play out on contemporary time scales. The class is based on 12 chapters of an in-press book by the instructor on Eco-Evolutionary Dynamics. Chapters (and therefore lecture/discussion topics) include natural selection, adaptation, adaptive divergence, gene flow, ecological speciation, population dynamics, community structure, ecosystem function, plasticity, and genetics.

Readings: Chapters of Eco-evolutionary Dynamics and additional readings from the primary literature.

Method: You must read assigned chapters/papers, attend classes, and regularly contribute to class discussions. In addition, each student will design and complete a scientific paper in a style suitable for submission to a peer-reviewed journal. Actual submission to journal is not necessary but every effort will be made to facilitate submission of suitable papers. Papers can include new theoretical models or literature reviews that test the predictions of existing models. Many previous papers from the class have been published in peer-reviewed journals and some have garnered many citations.

Evaluation: Class participation and scientific paper

BIOL 596 (Winter, 1 credit)
Advanced Experimental Design
Not offered in 2016-2017

Instructors: Jon Sakata N4/8 398-3636 jon.sakata@mcgill.ca

Prerequisite: BIOL 373 or equivalent and permission of instructor

Content: This course is aimed at graduate students in the Department of Biology and at upper-level undergraduates planning for data collection. As the course title indicates, the focus is on experimental design as a key step in experimentation with, and observation of, biological systems. The course will be oriented to help the students with the specific challenges that they are facing (or will be facing) in their own research. It will consist of three blocks: (i) formal lectures, (ii) discussions of scientific papers and of model experiments, and (iii) students presentation of their own experiments including hypothesis, design and challenges.

Readings: Selected readings from textbooks, journal articles

Evaluation: Based on discussions, presentation and written reports

BIOL 597 (Winter, 2 credits)
Advanced Biostatistics
Not offered in 2016-2017

Instructors: Jon Sakata N4/8 398-3636 jon.sakata@mcgill.ca

Prerequisites: BIOL 373 or equivalent, and permission of instructor; BIOL 596 recommended

Content: This course will be oriented to help graduates and upper division undergraduates with data analysis challenges they are facing in their own research. It is designed to be an extension of BIOL 596, Advanced Experimental Design. ANOVA, regression, mixed models, information theory, etc.

Readings: Selected readings from textbooks, journal articles

Method: It will consist of formal lectures, discussions of scientific papers and model experiments, student discussions of analytical techniques, and student presentations of the application of statistical approaches to their own data.

Evaluation: Based on written assignments, class presentations and participation.
BIOL 598 (Winter, 3 crs.)
Advanced Design and Statistics

(Offered in 2016-2017)

Instructor: Jon Sakata N4/8 398-3636 jon.sakata@mcgill.ca

Prerequisite: BIOL 373 or equivalent and permission of instructor

Restrictions: Not open to students who have taken BIOL 596 and/or BIOL 597

Content: The first part of the course focuses on experimental design as a key step in experimentation with and observation of biological systems. The second part of the course will help graduate and upper division undergraduate students with data analysis challenges they are facing in their own research. ANOVA, regression, mixed models, ordination, information theory, etc.

Method: It will consist of formal lectures, discussions of scientific papers and model experiments, student discussions of analytical techniques, and student presentations of the application of statistical approaches to their own data.

Readings: Selected readings from textbooks, journal articles

Evaluation: Based on written assignments, class presentations and participation.
STUDY ABROAD

EXCHANGE PROGRAMS

McGill has bilateral exchange agreements with over 100 universities around the world, plus the Quebec university system has additional agreements (called CREPUQ exchanges) with many more, mainly in France. Exchange students pay McGill tuition fees and register as Non-Resident students while they are away and register as Visiting Students (no fees) at the host university. Credits completed satisfactorily at the host university count towards the McGill degree but not the McGill CGPA. Exchanges are for one semester or one academic year. Check out the Study Abroad Fair held annually in early October.

The best time to participate in an exchange program is during the year before you graduate (U2). You must have a CGPA of 3.0 or better to be considered. The deadline for applying for an exchange is January before your expected Fall departure. You should start planning your exchange and researching possible exchange destinations during October of your U1 year. Watch for notices of the Student Exchange Information Sessions.

For Exchange Information, see:
http://www.mcgill.ca/students/international/goabroad and
http://www.mcgill.ca/science/student/general

For Exchange Partners, see:
http://www.mcgill.ca/students/international/exchange/partners

For academic information about credit transfer consult: Nancy Nelson, Biology Undergraduate Advisor, at nancy.nelson@mcgill.ca

STUDY AWAY

You may study for one semester or one academic year at a 3- or 4-year degree granting university of your choice. If there is no exchange agreement, you pay the prevailing tuition fees at the host university and you deal directly with the host university for making inquiries, applying for acceptance and paying fees. You must get Faculty approval. Check out http://www.mcgill.ca/students/international/goabroad
FIELD COURSES OFFERED BY HUNTSMAN MARINE SCIENCE CENTRE

HUNTSMAN MARINE SCIENCE CENTRE

The Huntsman Marine Science Centre is located in St. Andrews, New Brunswick. It offers several summer field courses for which credit can be gained towards your degree. These courses are highly recommended for a career in Marine Biology and would be useful for ecologists, future teachers and many others. Only the 3 credits from BIOL 335 can be applied to the GPA. The other courses will be treated as transfer credits. Note that enrolment is limited. Apply early.

PROCEDURES FOR APPLYING FOR HUNTSMAN COURSE(S)

1. Download an application form from the web site (http://www.huntsmanmarine.ca) and go to Education/University Courses
2. Complete the Huntsman application and mail it with a deposit to Huntsman Marine Science Centre: Brandy Cove Road, St. Andrews, N.B., Canada E0G 2X0. Phone: (506) 529-1200, Fax: (506) 529-1212, E-Mail: tdean@huntsmanmarine.ca
3. Register on Minerva and pay tuition fees to McGill (you will be reimbursed the McGill tuition fees for this course). Contact S. Gabe for approval (susan.gabe@mcgill.ca)

WE STRONGLY ADVISE

Before you start the course, confirm your registration on Minerva. (Remember if you are not registered at McGill, you will not get credit for the course).

NOTE

There are other courses offered by Huntsman Marine Science Center, and courses sponsored by other Universities that are not published in our Summer Studies Calendar. Please see the Huntsman web site for details.

Courses sponsored by other Universities (eg. University of Toronto, Guelph etc.) will be treated as Transfer Credits. Courses sponsored solely by Huntsman are treated as general interest course and no credits will be given.
FIELD STUDY SEMESTERS

PANAMA FIELD STUDY SEMESTER

Teaching staff members: Catherine Potvin, Department of Biology (Director)
Oliver Coomes, Department of Geography
Thom Meredith, Department of Geography
Daviken Studnicki-Gizbert, Department of History
Caroline Begg, Department of Plant Science

The program specifically addresses issues relevant to the understanding of the Latin America Neotropical environment. It is a joint venture between McGill University and the Smithsonian Tropical Research Institute (STRI) in Panama.

Enrolment of McGill students will be limited to 26 students by housing capacity. The courses will also be made available to 3 or 4 Panamanian students. Courses will be taught in English, but Spanish will be essential for communication.

Three courses, for a total of 9 cr., will provide formal training. Field trips and transdisciplinary approaches will be structuring elements of these courses.

BIOL 553 Neotropical Environments
HIST 510 Environmental History of Latin America
GEOG 404 Environmental Management 2

In addition, hands-on experience in an internship setting will be gained through the 'Research in Panama' course (ENVR 451, 6 credits), an independent studies project organized around multidisciplinary environmental issues. The nature of these projects will center on practical environmental problems/questions important for Panama. Students will form teams of 2-3 that will work with Panamanian institutions (NGO, governmental or research).

Of the 15 credits taken, biology students may apply as many as 12 credits toward the Biology Major/Faculty program (depending on their particular independent study). A CGPA of 3.0 or higher is recommended.

Pre-requisites for the Field Study Semester in Panama are: Spanish Language Elementary HISP 218, or equivalent, and Principles of Statistics MATH 203, or equivalent.

The cost of the program is $4,980 CDN (subject to change). This amount does not include airfare (about $900), tuition, insurance or living expenses. Students have reported requiring approximately an additional $2,000 in total for food, clothing, travel, etc. Once accepted into the program, students must pay a NON REFUNDABLE $1,000 deposit. The remaining balance must be paid by October 1st, 2016

For the winter of 2017, students are to submit by April 30, 2016 the Panama application form (available on the website), a letter of intent, a CV and a copy of their transcript to:
Faculty of Science
Dawson Hall, Room 408
853 Sherbrooke St. West
Montreal, QC H3A 2T6

For further information, see the website at: http://www.mcgill.ca/pfss

For information contact: Martine Dolmière
Faculty of Science,
Dawson Hall, Room 408
E-mail: martine.dolmiere@mcgill.ca
AFRICA FIELD STUDY SEMESTER

An opportunity to spend the Winter Semester in East Africa is offered by McGill. The semester includes 15 credits of coursework in Anthropology, Geography and Biology which are suitable for credit transfer.
Details from Professor Tom Meredith, Department of Geography, Burnside Hall, Room 414.
E-Mail: tom.meredith@mcgill.ca
For more information, see the web site: www.mcgill.ca/africa/

BARBADOS FIELD STUDY SEMESTER

Located at the Bellairs Research Institute, this full 15-credit semester is for undergraduate students in the Faculties of Agriculture & Environmental Science, Arts, Engineering, Science and the McGill School of the Environment with an interest in international development and sustainable management of resources and the environment.
It is coordinated by the Department of Bioresource Engineering on the Macdonald Campus.
Interested students should submit (via email) a CV, an unofficial transcript and a cover letter to:
susan.gregus@mcgill.ca

For more information, including application deadlines and, see the web site: http://www.mcgill.ca/bfss/
STUDENT RESOURCES

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>WEB PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athletics Department</td>
<td>http://www.mcgillathletics.ca/</td>
</tr>
<tr>
<td>Examination Conflicts</td>
<td>http://www.mcgill.ca/students/exams/conflicts</td>
</tr>
<tr>
<td>Examination Schedule</td>
<td>http://www.mcgill.ca/students/exams/dates</td>
</tr>
<tr>
<td>Exchange</td>
<td>http://www.mcgill.ca/students/international/students-going-abroad</td>
</tr>
<tr>
<td>Housing Office</td>
<td>http://www.mcgill.ca/students/housing/</td>
</tr>
<tr>
<td>Religious Holy Days & Exams Conflicts</td>
<td>http://www.mcgill.ca/students/exams/conflicts</td>
</tr>
<tr>
<td>Rereads (Service Point)</td>
<td>http://www.mcgill.ca/students/servicepoint/</td>
</tr>
<tr>
<td>Topic</td>
<td>URL</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Transfer Credits & Advanced Standing</td>
<td>http://www.mcgill.ca/students/transfercredit/</td>
</tr>
<tr>
<td>Transcripts</td>
<td>http://www.mcgill.ca/students/records/transcripts</td>
</tr>
</tbody>
</table>
ABOUHEIF, Ehab
Professor
N3/6
(514) 398-7190
EHAB.ABOUHEIF@MCGILL.CA
Evolutionary developmental biology: comparative and functional gene expression studies in ants and other insects are used to study the evolution of developmental regulatory genes and gene networks; the importance of ecological influences on development and evolution; and the relationship between molecular and morphological evolution.

ALTIERI, Andrew
Adjunct Professor
STRI
(507) 637-6340
ALTIERIA@SL.EDU
Community ecology: the consequences of species extinction, invasions, habitat degradation, and overfishing on the emergent properties of coastal ecosystems; how human activities affect the distribution, abundance, and diversity of key organisms in coastal habitats; the consequences of biodiversity change for ecosystem functions; how do synergistic community interactions and physiological tolerances mediate trajectories of decline and resilience in ecosystems? Results of my research thereby integrate from the organismal to ecosystem levels of ecological organization, and provide a practical understanding of coastal ecosystems that is based in both natural history and ecological theory.

BARRETT, Rowan
Associate Member
Redpath Museum Rm 207
(514) 398-4086 X00856
ROWAN.BARRETT@MCGILL.CA
My work is motivated by a desire to understand the genetic basis of adaptation to changing environments. My research bridges theoretical and empirical approaches in population genetics, evolutionary ecology, and molecular biology to ask questions about the reciprocal interactions between ecological and evolutionary processes. I pursue this research program with a variety of key study systems, including stickleback fish, deer mice, and microbes.

BELL, Graham
Professor
W6/18
(514) 398-6458
GRAHAM.BELL@MCGILL.CA
Experimental studies of adaptation using yeast, Chlamydomonas and bacteria as model systems. The rate and effect of mutations and the dynamics of selection. Genetic variation and species diversity in environments that vary in space and time, and the evolution of specialists and generalists. Field experiments using genetically well known model organisms.

BELLINI, Francesco
Adjunct Professor
FBELLINI@PICCHIO-INTL.COM
BELLUS Health Inc

BROUHARD, Gary
Associate Professor
Bellini 267
(514) 398-2984
GARY.BROUHARD@MCGILL.CA
Cells adopt a range of shapes and can build an amazing variety of structures from proteins. We are interested in the biophysical mechanisms by which cells engineer these large-scale structures—in other words, the molecular basis of morphology. The subject of our current research is the microtubule cytoskeleton. We investigate the proteins that control the microtubule cytoskeleton, namely microtubule polymerases, motor proteins, and other microtubule-associated proteins. The lab uses the techniques of single-molecule biophysics, which shed light on the fundamental workings of these important enzymes.
BROWN, Gregory G. Professor Emeritus N5/11 (514) 398-6426 GREG.BROWN@MCGILL.CA
Organization and expression of plant mitochondrial DNA; cytoplasmic male sterility in plants.

BUREAU, Thomas E. Associate Professor N4/1 (514) 398-6472 THOMAS.BUREAU@MCGILL.CA
Molecular evolution of genes and genomes, with an emphasis on the involvement of mobile elements in the evolution of developmentally important genes. Determination of the transposition mechanisms of novel mobile elements, including MITEs (miniature inverted-repeat transposable elements). Development of genomics-based approaches to study genome evolution. Examination of the role of retroelement-mediated cellular gene transduction in the evolution of retroviruses.

BUSSEY, Howard Professor Emeritus N5/16B (514) 398-6439 HOWARD.BUSSEY@MCGILL.CA
Yeast genomics. Molecular biology of protein secretion and cell surface assembly in yeast.

CARBONETTO, Salvatore Associate Member Montreal General Hospital (514) 934-1934 x44237 SAL.CARBONETTO@MCGILL.CA
Molecular and cellular studies of synapse formation and muscular dystrophy. Structure/function studies of dystrophin-associated proteins using biochemical and recombinant DNA methods as well as transgenic mice.

CARROLL, Robert L. Professor Emeritus Redpath Museum (514) 398-4086 x4090 ROBERT.CARROLL@MCGILL.CA

CHAPMAN, Colin Associate Member Anthropology and MSE/ Peterson Hall Rm 22A (514) 398-1242 COLIN.CHAPMAN@MCGILL.CA
Experimental and observational approaches to determine how plant communities influence animals (primate population regulation, determinants of primate group size) and how animals influence their environment (herbivory, seed dispersal, community restoration). This research has often been developed to permit direct application to conservation.

CHAPMAN, Lauren Professor N3/12A (514) 398-6431 LAUREN.CHAPMAN@MCGILL.CA
Aquatic ecology and conservation, evolutionary and ecological consequences of respiratory strategies in fishes, Ecophysiology, ecomorphology, adaptive divergence, tropical inland waters, Africa. Recent work focuses on divergent selection across oxygen gradients in fishes, the interaction of hypoxia with other environmental stressors (e.g., introduced species) and value of tropical wetlands in the maintenance of fish faunal structure and diversity.

CHARRON, Frédéric Adjunct Professor IRCM (514) 987-5773 FREDERIC.CHARRON@IRCM.QC.CA
Molecular Biology of Neural Development

CHASE, Ronald Professor Emeritus RONALD.CHASE@MCGILL.CA
CLARKE, Hugh Associate Member Royal Victoria Hospital (514) 934-1934 x34748
HUGH.CLARKE@MCGILL.CA
Mammalian oogenesis and early embryogenesis. Changes in chromatin composition during oogenesis and early embryogenesis with the aim of identifying how these might control initial programming of gene expression. Intracellular signalling mechanisms that regulate oocyte growth.

COLLIN, Rachel Adjunct Professor STRI (507) 212-8766
COLLINR@SLEDU
Evolution of marine invertebrate life histories, larval ecology, phylogeography, morphological integration through metamorphosis, invertebrate systematics.

CRISTESCU, Melania Associate Professor N6/1 (514) 398-1053
MELANIA.CRISTESCU@MCGILL.CA
Invasive species; genetic diversity and mutations of organism; aquatic ecosystems.

DANKORT, David Associate Professor Bellini 264 (514) 398-2307
DAVID.DANKORT@MCGILL.CA
Cancer represents a failure of built-in protection mechanisms to quell rogue cells that have sustained oncogenic mutations. Paradoxically, many of the same mutated oncogenes that cause cancer also elicit a permanent growth arrest (senescence) or induce apoptotic cell death of primary cells: two such oncogenes are RAS and BRAF. One research goal of my laboratory is to determine mechanistically how a tumour cell subverts these growth restraints leading to unbridled proliferation and ultimately malignancy. We will use the power of mammalian genetics in 'state-of-the-art' genetically engineered mouse model and cell culture systems to define causative roles for RAS and BRAF-cooperating genes involved in lung cancer and melanoma developments and progression.

DAVIES, Jonathan Associate Professor W3/4 (514) 398-8885
J.DAVIES@MCGILL.CA
Phylogenetics & Biodiversity. Development and application of phylogenetic methods in ecology and conservation biology. Phylogenetics offers a powerful means to explore evolutionary mechanisms shaping ecological patterns and the distribution of species richness. A better understanding of the processes shaping biodiversity patterns will be critical if we wish to reduce current rates of biodiversity loss.

DENT, Joseph A. Associate Professor N4/7A (514) 398-3724
JOSEPH.DENT@MCGILL.CA
Molecular genetics of behaviour in C. elegans. Understanding the structure and function of ligand-gated chloride channels, how they are integrated into the synapse, and how they contribute to behavioural circuits. Evolution of channel subunit diversity. Developing new tools for the analysis of nervous systems.

DHINDSA, Rajinder S. Professor N3/11B (514) 398-6423
RAJDHINDSA@MCGILL.CA
DRAPEAU, Pierre Adjunct Professor U. de Montréal (514) 343-6294
PIERRE.DRAPEAU@MCGILL.CA
Development of the locomotor network of the zebrafish. Electrophysiological studies of neural circuit formation during normal development and in mutants with selective locomotor defects.

DUFORT, Daniel Associate Member MUHC-RI, Glen EM0.3230 (514) 934-1934 x34743
DANIEL.DUFORT@MUHC.MCGILL.CA
My laboratory is interested in understanding the molecular mechanisms involved in the process of embryo implantation. We have demonstrated that the embryo secretes Wnt proteins which activate Wnt signalling in the uterus. We further demonstrated that inhibition of Wnt signalling impairs the implantation process illustrating the importance of this pathway in embryo implantation (in press, PNAS). This project will be aimed at characterizing the function of Wnt signalling in the uterus during the implantation process.

FRANÇOIS, Paul, Associate Member Rutherford Physics Bldg Rm 221 (514) 398-1635
PAULF@PHYSICS.MCGILL.CA
Theoretical biological physics: modelling of physical properties gene networks and their evolution, in the context of embryonic development.

FUSSMANN, Gregor Professor and Chairman W6/4 (514) 398-1370
GREGOR.FUSSMANN@MCGILL.CA
Community ecology. Population and community dynamics; stability and complexity of food webs; the interplay of ecological and evolutionary dynamics; clonal structure of populations. Approach: both theoretical and empirical (laboratory and field experiments with aquatic organisms).

GONZALEZ, Andrew Associate Professor N3/2 (514) 398-6444
ANDREW.GONZALEZ@MCGILL.CA
My lab’s long term research goals are to make essential progress in our understanding of the structure and functioning of lakes and to quantify how these ecosystems have responded to the accelerated rate of change introduced by human activities over the Anthropocene. Central to this program is the ability to develop, scrutinize and integrate data from different sources: lake surveys, time series and field experiments.

GUICHARD, Frédéric Professor W3/3 (514) 398-6464
FREDERIC.GUICHARD@MCGILL.CA
Theoretical ecology and complex system theory applied to inter-tidal ecosystems and to marine reserve design. Emergence of large scale patterns and dynamics from local interactions among individuals. Multi-disciplinary approach involving mathematical modelling, field experiments and remote sensing.
GUZMAN, Hector Adjunct Professor STRI (507) 212-8733
GUZMANH@SI.EDU
Ecology and population dynamic of coral reefs; sclerochronology; conservation biology; human impacts on marine ecosystems, coastal management and marine pollution.

HARGREAVES, ANNA, Assistant Professor (Starting in January 2017)
ALHARGREAVES@GMAIL.COM
Evolutionary ecology, interactions among species and the dynamics of species range limits. Theoretical ideas in ecology and evolution and in conservation and adaptation.

HARRISON, Paul Associate Professor W3/15 (514) 398-6420
PAUL.HARRISON@MCGILL.CA
Bioinformatics and computational biology. Genome evolution and annotation; analysis and annotation of pseudogenes and their implications; protein folding, amyloidogenesis and the prion phenomenon; methods for protein structure prediction.

HASTINGS, Kenneth Associate Member Montreal Neurological Institute (514) 398-1852
KEN.HASTINGS@MCGILL.CA
Muscle gene regulation, evolution of muscle gene families and muscle cell subtypes, evolution and function of SL trans-splicing in the chordates.

HEKIMI, Siegfried Professor W5/29 (514) 398-6440
SIEGFRIED.HEKIMI@MCGILL.CA
Molecular genetics of aging. To understand the mechanisms that govern the life span of animals, we use the nematode Caenorhabditis elegans as well as mice and human cells in culture to identify and characterize genes that affect physiological rates, including the rate of aging.

HENDRICKS, Michael Assistant Professor N5/11 (514)-398-6581
MICHAEL.HENDRICKS@MCGILL.CA

HENDRY, Andrew Professor Redpath Museum (514) 398-4086x00880
ANDREW.HENDRY@MCGILL.CA
The evolution of biological diversity: adaptive radiation, ecological speciation, "rapid" evolution, natural selection and gene flow. Empirical systems currently include salmon, sticklebacks, and guppies. Methods include surveys of biological diversity, field and laboratory experiments, molecular genetics, quantitative genetics, and theoretical modelling.

HIPFNER, David Adjunct Professor IRCMs (514) 987-5508
DAVID.HIPFNER@IRCM.QC.CA

KALFF, Jacob Professor Emeritus N2/5 (514) 398-6465
JACOB.KALFF@MCGILL.CA

140
KRAHE, Rüdiger Associate Professor W3/23A (514) 398-8065
RUDIGER.KRAHE@MCGILL.CA
Neuroethology. Information processing in sensory systems using behavioural, electrophysiological, computational, and neuroanatomical approaches. Animal communication studies in the lab and in the field

KRAMER, Donald Professor Emeritus DONALD.KRAMER@MCGILL.CA

LARSSON, Hans Associate Member Redpath Museum (514) 398-4086 x089457
HANS.CE.LARSSON@MCGILL.CA
Vertebrate palaeontology and developmental evolution. Palaeontological work focuses on terrestrial Mesozoic vertebrates in the Canadian arctic and explores signatures of ancient climate shifts in palaeo-faunas. Developmental evolution work addresses what developmental mechanisms (morphological and molecular) are responsible for changes in the evolution of vertebrate morphology.

LASKO, Paul F. Professor Bellini 277 (514) 398-6721
PAUL.LASKO@MCGILL.CA

LECHOWICZ, Martin J. Professor (Retired) W6/8A (514) 398-6456
MARTIN.LECHOWICZ@MCGILL.CA

LEFEVBRE, Louis Professor W6/10 (514) 398-6457
LOUIS.LEFEVBRE@MCGILL.CA
Animal behaviour, feeding strategies of flock-feeding birds, social learning.

LESIOS, Harilaos Adjunct Professor STRI (507) 212-8253
LESSIOSH@POST.HARVARD.EDU
Speciation, evolution of reproductive isolation, rate of protein and mitochondrial DNA evolution, the effects of gene flow in the evolution of marine populations, phylogenetic reconstruction, molecular biogeography, ecology of tropical marine invertebrates, impact of mass mortality on coral reef biota.

LEUNG, Brian Associate Professor W6/14 (514) 398-6460
BRIAN.LEUNG2@MCGILL.CA
Biological invasions, ecology of diseases, anthropogenic stressors. Addressing environmental issues through the synthesis of models (mathematical, computational, and statistical) with empirical data (literature, field or lab studies). Creating models for ecological forecasting, given uncertainty and sparse data. Developing decision theory, using risk analysis.

LEWIS, John B. Professor Emeritus W2/6
JOHN.LEWIS@MCGILL.CA

141
LOREAU, Michel Adjunct Professor National Centre for Scientific Research (CNRS) MICHEL.LOREAU@MCGILL.CA

MANDATO, Craig Associate Member Anatomy & Cell Biology / Strathcona Rm 301 (514) 398-5349 CRAIG.MANDATO@MCGILL.CA
The in vivo relationship of cytoskeletal systems characterizing the molecular basis of interactions during cell division and cellular wound healing. This work is expected to advance research on the molecular pathology of diseases such as muscular dystrophy, as well as neuronal regeneration following injury.

MCMILLAN, Owen Adjunct Member STRI (507) 212-8299 MCMILLAN@SLEDU
Origins of adaptive variation, the genetic basis of mating behaviour, and the ecological and evolutionary processes that shape genetic variation in natural populations.

MILLIEN, Virginie Associate Member W3/20 (514) 398-4849 VIRGINIE.MILLIEN@MCGILL.CA
The evolution of body size and morphological diversity in relation to environmental change: Ectypic variation and climate change; The evolution of species on islands; The effects of climate change and isolation on morphological evolution; Functional morphology in fossil rodents and other mammals; Competition and community size structure among coexisting species; Species range shift under climate change and the emergence of Lyme disease in Southern Quebec.

MOON, Nam-Sung Associate Professor Bellini 266 (514) 398-2982 NAM.MOON@MCGILL.CA
Molecular genetics of cancer genes in Drosophila melanogaster. Multiple genetic changes are responsible for the development of human cancer. Often, genes that are altered in cancers are evolutionarily conserved and their functions can be studied in a model organism such as the fruit fly (Drosophila melanogaster). My research is focused on studying cancer related genes using Drosophila as a model organism. In particular, I am interested in understanding the in vivo function of RBF1, the Drosophila homologue of the RB (Retinoblastoma) gene, which is functionally inactivated in most types of cancer.

NILSON, Laura Associate Professor NS/8 (514) 398-6448 LAURA.NILSON@MCGILL.CA
Developmental genetics in Drosophila melanogaster. Identification and analysis of genes required in the somatic follicle cells of the ovary for patterning of the future embryo. Genetic and molecular analysis of organization and morphogenesis of the ovarian follicular epithelium.

PAGE, Rachel, Adjunct Professor STRI PAGER@SLEDU
Vertebrate behavior, in particular predator-prey interactions, the sensory and cognitive ecology of foraging, and the effect of eavesdroppers on signal evolution

POLLACK, Gerald Professor Emeritus W2/SC (514) 398-6418 GERALD.POLLACK@MCGILL.CA
Neurophysiological, developmental and anatomical studies of the neural basis for behaviour. Acoustic communication.
POTVIN, Catherine Professor W6/8 (514) 398-3730
CATHERINE.POTVIN@MCGILL.CA
Physiological ecology; global change; photosynthesis and productivity; experimental design and biostatistics; conservation biology; tropical ecology.

PRICE, Neil M. Professor N6/12 (514) 398-6468
NEIL.PRICE@MCGILL.CA

RAO, Yong Associate Member Montreal General Hospital (514) 934-1934 x42520
YONG.RAO@MCGILL.CA
The molecular mechanism of axonal guidance and target recognition in the fly visual system and the molecular mechanism of neuronal migration.

READER, Simon Associate Professor W3/14A (514) 398-6421
SIMON.READER@MCGILL.CA
Animal behaviour, behavioural ecology, behavioural neuroscience, cognitive evolution. Research focuses on social behaviour and social learning in the laboratory and the field.

REYES LAMOTHE, Rodrigo Assistant Professor Bellini 271 (514) 398-5137
RODRIGO.REYESLAMOTHE@MCGILL.CA
Dynamics of replication; chromosome organization, segregation and cell division.

RICCIARDI, Anthony Associate Member Redpath Museum (514) 398-4089
TONY.RICCIARDI@MCGILL.CA

ROSENBLATT, David Associate Member Human Genetics N5/13 (514) 398-3600
DAVID.ROSENBLATT@MCGILL.CA
Inborn errors of cobalamin (Vitamin B12) and folate metabolism. Gene discovery and studies of gene product function in the cobalamin pathway. Gene discovery for autosomal recessive Mendelian disorders.

ROY, Richard Professor W5/17 (514) 398-6437
RICHARD.ROY@MCGILL.CA
The normal development of an organism depends on the precise orchestration of cell division, differentiation and morphogenesis. Although much is understood about how developmental regulatory genes affect cell differentiation, little is understood about how they control cell proliferation. Using both genetic analysis and molecular approaches, the Roy Laboratory is engaged in the identification and characterization of genes that affect cell division throughout the course of development in *C. elegans*.
ROZEN, Rima Associate Member Montreal Children's Hospital (514) 412-4358
RIMA.ROZEN@MCGILL.CA
Molecular genetics of inherited diseases; genetic risk factors for cardiovascular disease and neural tube defects; folic acid metabolism in cancer.

SAKATA, Jon Associate Professor N4/8 (514) 398-3636
JON.SAKATA@MCGILL.CA
I integrate behavioural, neurophysiological and molecular approaches to investigate the neural circuitry underlying social influences on vocal learning and control.

SCHOECK, Frieder Associate Professor W5/6 (514) 398-6434
FRIEDER.SCHOECK@MCGILL.CA
We study cell-matrix adhesion and the actin cytoskeleton, in particular, how integrin-associated proteins regulate adhesion during muscle attachment and myofibril assembly in the fruit fly Drosophila. Our research will shed light on the regulation of integrin adhesion and its coordination with the actin cytoskeleton, and will lead to a better understanding of muscle disorders.

SCHOEN, Daniel J. Professor N3/8A (514) 398-6461
DANIEL.SCHOEN@MCGILL.CA

TAKETO, Teruko Associate Member MUHC-RI, Glen EM0.3220I (514) 934-1934 x34197
TERUKO.TAKETO@MCGILL.CA

TORCHIN, Mark Adjunct Professor STRI (703) 487-3770
TORCHINM@SLEDU
Marine population and community ecology, host-parasite interactions, invasion ecology, conservation biology.

VAN MEYEL, Donald Associate Member Centre for Research in Neuroscience (514) 934-1934 x 42995
DON.VANMEYEL@MCGILL.CA
The overall objective of research in our laboratory is to understand molecular and organizational principles that underlie the assembly of functional neural circuits during development. Our research program is divided into two primary themes that focus on 1) the importance of neuron-glial interactions during development, and 2) the patterned growth and guidance of axons and dendrites. We are also interested in how perturbations of these processes contribute to neurological diseases, and how improved understanding of the underlying mechanisms can be used to promote repair in the injured or diseased CNS.

VOGEL, Jacalyn Associate Professor Bellini 269 (514) 398-5880
JACKIE.VOGEL@MCGILL.CA
The mitotic spindle plays an essential role in the transmission of genetic information during cell division in all eukaryotic cells. Our research focuses on spindle dynamics and cell cycle control mechanisms. We use budding yeast as a model for the detailed analysis of these evolutionarily conserved processes, using high-resolution microscopy, biochemistry, molecular genetics, and the analysis of relevant genetic networks and protein structure-function relationships using genomic and bioinformatics methods.
We are interested in the development of neuronal circuits, and the early patterned network activity that is thought to play a role in this process. Using electrophysiology combined with two-photon and confocal imaging, my lab studies how network activity and other early events play a role in sculpting the developing cerebellum.

Cells are crowded with macromolecules that form highly organized yet dynamic structures. While advances in fluorescence microscopy enable us to visualize this spatiotemporal heterogeneity, the mechanisms underlying intracellular organization remain largely unknown. The Weber lab uses quantitative live-cell imaging and physical modeling to understand how biological systems establish and dynamically regulate spatial order in the cell and ultimately how these processes affect the growth and size of the whole organism.

Correct growth and development in plants is inextricably linked with the characteristics of their cell walls. My research focuses on the mechanisms of cell wall production and modification using a combination of genetics and cell biology. We also address the ramifications of changes in cell wall properties on plant development through morphological and biomechanical studies.

Molecular biology signalling in the yeasts S. cerevisiae and C. albicans. Analysis of MAP kinase pathways for mating and stress response.

Neuroethology. Neural mechanisms underlying the production and perception of social communication behaviors in songbirds using electrophysiology, behavioral analysis, molecular biology and computational methods.

Proper chromosome morphogenesis is required for the faithful segregation of chromosomes during meiosis and can be readily studied in the nematode Caenorhabditis elegans. The research goals of my laboratory are to investigate the function and regulation of meiotic chromosome organization using a combination of genetics, molecular biology and high-resolution cytogenetics.

The overall goal of my research is to understand how plant intracellular membrane trafficking is regulated as cell morphology changes during plant development and in response to environmental stresses. We are using a GFP-based living cell imaging technology combined with genetic approaches to study how plant genes control these important processes. Another research we are interested is to use reverse genetic and chemical genomic approaches to study the molecular regulation and function of very-long-chain fatty acid (VLCFA) biosynthesis and secretion in the production of waxes, seed oils, and sphingolipids.

Last update: Dec. 20, 2016