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Feeding innovations in a nested
phylogeny of Neotropical passerines

Louis Lefebvre, Simon Ducatez and Jean-Nicolas Audet

Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montréal, Québec, Canada H3A 1B1

Several studies on cognition, molecular phylogenetics and taxonomic diversity

independently suggest that Darwin’s finches are part of a larger clade of

speciose, flexible birds, the family Thraupidae, a member of the New World

nine-primaried oscine superfamily Emberizoidea. Here, we first present a new,

previously unpublished, dataset of feeding innovations covering the Neotropi-

cal region and compare the stem clades of Darwin’s finches to other neotropical

clades at the levels of the subfamily, family and superfamily/order. Both in

terms of raw frequency as well as rates corrected for research effort and phylo-

geny, the family Thraupidae and superfamily Emberizoidea show high levels of

innovation, supporting the idea that adaptive radiations are favoured when

the ancestral stem species were flexible. Second, we discuss examples of inno-

vation and problem-solving in two opportunistic and tame Emberizoid species,

the Barbados bullfinch Loxigilla barbadensis and the Carib grackle Quiscalus
lugubris fortirostris in Barbados. We review studies on these two species and

argue that a comparison of L. barbadensis with its closest, but very shy and con-

servative local relative, the black-faced grassquit Tiaris bicolor, might provide

key insights into the evolutionary divergence of cognition.
1. A nested phylogeny of flexible new world birds
The superfamily Emberizoidea, also known as New World nine-primaried oscines

[1], includes the families Emberizidae, Icteridae, Parulidae and Cardinalidae, as well

as Thraupidae, whose most famous members are Darwin’s finches. The superfam-

ily accounts for almost 8% of all birds (832 species, [2]) and has evolved a broad

range of morphologies and feeding adaptations that have allowed it to radiate

throughout the New World, parts of the Old World (buntings) and to colonize

outlying islands in the Pacific (Galápagos finches, Cocos finch) and Atlantic

oceans (Tristan da Cunha finches, Gough finch) [3]. The diversification rate of

the superfamily, based on statistical comparisons [4] and molecular estimates of

divergence time from common ancestors [1], is higher than that of other clades,

with the families Icteridae (grackles, cowbirds and New World blackbirds) and

Thraupidae (collectively referred to as tanagers) contributing most of the effect.

The family Thraupidae in particular has a 40% higher diversification rate than

its most closely related clades, five times higher than that of the Neoaves mean and

an order of magnitude higher than the vertebrate average [1]. Recent revisions of

Thraupidae molecular phylogeny [5] have led to the incorporation into this family

of many species previously classified [6] as Emberizidae. This includes Darwin’s

finches, as well as several Caribbean bullfinch and grassquit genera, plus the

bananaquit Coereba flaveola that had earlier been considered the sole member of

the Coeribidae. This revision makes tanagers the second largest family of birds,

representing 12% of the Neotropical avifauna (371 species, [5]).

Within Thraupidae, the subfamily Coeribinae, to which Darwin’s finches

belong, shows a range of trait variation (for example, bill dimensions) that is

much higher than that of other subfamilies with similar ages and levels of

sequence divergence [7]. Because of this range of trait variation, the high diversi-

fication rate, and the ability to disperse from South and Central America to islands

in the Caribbean as well as the Pacific and Atlantic oceans, Burns and co-authors

[5] go as far as suggesting that the Coeribinae might have intrinsic evolvability,

i.e. a greater propensity for dispersal than other lineages, a greater capability of

colonizing islands and a developmental-genetic architecture that includes a
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Figure 1. Frequency (a) and rate (b) residuals of frequency corrected by research effort and phylogeny of feeding innovations in Neotropical orders, suborders,
infraorders and superfamilies.
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greater variety of regulatory genes leading to a higher degree of

phenotypic variation in key traits (see also [7,8]). For example,

different lineages of Darwin’s finches and endemic Caribbean

bullfinches show both variation and convergence in the genetic

system guiding the bone and cartilage development that deter-

mines beak size and shape [8,9]. Chaves et al. [10] contrast the

large morphological variation seen in Darwin’s finches with

the lack of variation observed in the yellow warblers that

have also colonized the Galápagos and Cocos islands; similar

to Burns et al. [5,7], they also raise the possibility of differences

in evolvability between the clades.

Independently of this literature on molecular phylogenetics

and developmental genetics, Tebbich et al. [11] applied West-

Eberhard’s [12] concept of ’the flexible stem’ in discussing

both the speciosity and cognitive abilities of Darwin’s finches.

In her 2003 book, West-Eberhard [12] had proposed that adap-

tive radiations may be favoured when an exceptionally flexible

stem species colonizes a new environment. In comparing the

tool-using woodpecker finch Camarhynchus pallidus and its

non-tool-using sister species, the small tree finch Camarhynchus
parvulus, Tebbich et al. [11] found no evidence that the former

had an adaptively specialized form of physical cognition that

differed from its non-tool-using relative. Tebbich et al. [11]

proposed that innovativeness might be phylogenetically primi-

tive in the clade and that flexibility within the founding

population of the Galápagos had led to the development of

new behaviours to exploit the new foods and new habitats the
colonizers found there. Given genetic variation, selection had

then, over time, led to several cases of genetic accommodation.

What is striking about this ‘flexible stem hypothesis’ is its

similarity to the conclusions arrived at by the analysis of mol-

ecular diversification and phenotypic variation: the highly

innovative, tool-using woodpecker finch shares key traits

with the whole, speciose, clade of Darwin’s finches, who

share these traits with their relatives in the whole Coeribinae
subfamily, the whole tanager family and several branches

of the Emberizoidea superfamily. In other words, high innova-

tiveness, high phenotypic variation and high diversification

rates might be shared traits of a nested phylogeny that goes

from the species to the superfamily. The ’flexible stem’

might thus be ancient.

Our paper addresses this possibility in two ways,

combining a phylogenetic analysis of a new, previously

unpublished, dataset of innovations from the Neotropical

region and a discussion of innovations and problem-solving

in two well-studied Emberizoid species from Barbados. The

new Neotropical innovation database is given in its entirety

in the electronic supplementary material, table S1. If the flexible

stem hypothesis applies to Darwin’s finches, we predict

that the nested clades (subfamily Coeribinae, family Thraupidae,

superfamily Emberizoidea) that lead to Darwin’s finches should

show high innovation frequencies. To do this, we draw on the

same method used for previous innovation databases (birds:

North America and the British Isles: [13]; Australia and New

http://rstb.royalsocietypublishing.org/
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Figure 2. Frequency (a) and rate (b) residuals of frequency corrected by research effort and phylogeny of feeding innovations in families of the superfamily Ember-
izoidea. The phylogenetic tree is adapted from [1].
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Figure 3. Frequency (a) and rate (b) residuals of frequency corrected by research effort and phylogeny of feeding innovations in subfamilies of the family
Thraupidae. The phylogenetic tree is adapted from [5].
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Zealand: [14]; Western Europe and the Indian subcontinent:

[15]; primates: [16]): an exhaustive search of the short notes

of as many local specialized journals as we could consult.

The second part of our paper reviews field and experimental

data on innovativeness in one of the Darwin’s finches closest

relatives, the endemic Barbados bullfinch Loxigilla barbadensis.
We also extend our discussion of field and experimental data

to the most innovative genus within Emberizoidea, the grackle

genus Quiscalus, in particular the highly opportunistic species

that feeds with L. barbadensis in the wild, the Carib grackle

Q. lugubris fortirostris.
2. Comparative analyses of feeding innovations
in Neotropical birds

We exhaustively searched the short notes of all Neotropical

ornithology journals available to us online at McGill
(37 journals from Mexico to Chile; see the electronic sup-

plementary material S1 for details of the methods) for key

words mentioning opportunism (112 cases; note that a

given case may contain several key words), ‘not’ or ‘never’

or ‘un-’ recorded behaviours (111 cases), ‘first’ reports (56

cases), ‘new’ and ‘novel’ (44 cases) or ‘unusual ’(9 cases)

observations that ‘depart’ from the usual behaviour (30

cases) or have been seen ‘only’ in ‘other’ species or ‘other’

foods (42 cases) or are ‘learned’ (5 cases). As in previous data-

bases, we used the judgement of the author of the primary

observation as a criterion for inclusion, as Neotropical

ornithologists know their study species better than we do.

We found 352 innovations in 256 species. The entire data-

base is given in the electronic supplementary material,

table S1. Innovations ranged from simple opportunistic feed-

ing on a newly available food source (often insects) to the

more spectacular cases of an Antarctic skua (Stercorarius
antarcticus) and a blackish cinclodes (Cinclodes antarcticus)

http://rstb.royalsocietypublishing.org/
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Figure 4. Feeding innovations in Carib grackles in Barbados. (a) Dunking dog
pellets in water at the Bellairs Research Institute. (b) Stealing a pellet from a
dunking bird. (c) Eating fish remains at the Payne’s Bay fish market.
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drinking blood from a wound on an elephant seal (Mirounga
leonina), tool use in the shiny cowbird (Molothrus bonariensis)
and the yellow-rumped marshbird (Pseudoleistes guirahuro)
and baiting fish with bread in the rufescent tiger heron (Tigri-
soma lineatum), a behaviour normally reported in the striated

heron (Butorides striata) and other heron species (see review

in [17]).

Figures 1–3 present phylogenetic diagrams of innovation

rate per clade at three taxonomic levels: Emberizoidea against

other superfamilies and orders (figure 1), Thraupidae against

other nine-primaried oscine families (figure 2) and Coeribinae
against other Thraupid subfamilies (figure 3). In these dia-

grams, taxa are placed according to their phylogenetic

proximity, and innovation rates (part (b) of each figure) are cal-

culated as residuals of Phylogenetic Generalized Least-Squares

(PGLS) regressions of innovation frequency (part (a) of each

figure) against research effort (taken from [18]) per clade,

which is an important confounding variable of innovation fre-

quency ( p ¼ 0.058–0.0003 in this dataset depending on the

taxonomic level; see the electronic supplementary material

S1). Clades where no innovations were found are not included

in the analyses, as the absence of innovations might mean

either that birds of these clades are not innovative or that what-

ever innovations they might show were not observable for

geographical or research effort reasons (research effort on

2217 of avian species worldwide is zero [18]). The phylogenetic

signal was high at the superfamily and subfamily levels

(Pagel’s l estimated by maximum likelihood ¼ 0.934 and 1),

but null at the family level (Pagel’s l ¼ 0), suggesting that vari-

ation in innovativeness between families is independent of

phylogeny.

As is evident in part (a) of each figure, the nested phylo-

geny that goes from Emberizoidea to Coeribinae reveals high

innovation frequencies at all three taxonomic levels. When

frequencies are regressed against research effort and

common ancestry controlled in the PGLS, however, only

the higher two phylogenetic levels, the superfamily and the

family, reveal high innovation rates for the nested clades

that include Darwin’s finches. At the highest taxonomic

level (figure 1), Emberizoidea have the largest number of inno-

vations (71, figure 1a), as well as positive phylogenetically

corrected residuals (figure 1b) that are only slightly smaller

than those of the two sub-oscine infraorders Tyrannida
(tyrant flycatchers) and Furnarida (ovenbirds). As in other

parts of the world [19], Piciformes (in the neotropics, toucans

as well as woodpeckers), gulls (suborder Lari) and raptors

(Falconiformes and Accipitriformes) show high innovation fre-

quencies (figure 1a). Caracaras are the species group with

the highest number of innovations, 18, the genus Milvago
(eight innovations) and Caracara plancus (seven innovations)

providing the largest share (see the electronic supplementary

material, table S1). As is the case in other innovation data-

bases [19], shorebirds (suborders Scolopaci and Charadrii)
and doves (Columbiformes) show low innovation frequencies.

Ratites and Galloanserae also show either zero or very low

innovation rates: ducks and landfowl are absent from

figure 1 because they show no innovations, while the greater

rhea registers the only known ratite innovation worldwide,

with the presence of fish in faeces supporting an observation

of consumption of fish at the margins of a reservoir [20].

Several passerine clades show high innovation rates, in

particular the sub-oscine infraorders Tyrannida and Furnarida.

Surprisingly, corvids (Corvoidea) do not dominate the
database in the way they do in all other parts of the world

[19] and rank 12th and 9th, respectively, in terms of innova-

tion frequency and phylogenetically corrected residual rate in

the Neotropics. The two dietary categories that are the source

of many innovations in other parts of the world, predation

and carrion feeding, seem to be rare in South American Cor-

vids [21]. Instead, Lopes et al. [21] highlight the fact that two

Thraupid species show corvid-like ingestion of meat remains

on cattle skin drying in the sun.

At the level of families within nine-primaried oscines,

Thraupidae rank first with 56% of the innovations in the clade

(41 of 71; figure 2a). Icteridae (grackles, cowbirds and allies)

rank second on both the left and right part of figure 2. Within

Thraupidae, the subfamily Coeribinae ranks highest in terms of

innovation frequency (16, figure 3a), but falls behind other sub-

families when research effort, elevated by the many studies on

Darwin’s finches, is factored in with the PGLS (figure 3b). As in

http://rstb.royalsocietypublishing.org/
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Figure 5. Feeding innovations and opportunistic feeding in Barbados bullfinches in the field. (a) Opening sugar packets at a restaurant. (b) Lifting the lid on a bowl
of sugar (see also the electronic supplementary material, movie S1). (c) Drinking cream from a jug on a restaurant table (see also the electronic supplementary
material movie S2). (d ) Foraging inside a garbage can.
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other innovation databases [13–15,19], our focus on low impact

factor regional ornithology journals might have underestimated

innovation rates in taxa where the most spectacular cases are

reported in higher impact factor journals, which are included

in research effort, but not in innovation frequency. We are cur-

rently estimating the effects of this limitation on our worldwide

database. Owing to this possible limitation, the family level pro-

vides more robust support of the flexible stem hypothesis than

the subfamily level.
3. A review of innovativeness and problem-
solving in Loxigilla barbadensis and Quiscalus
lugubris fortirostris

The neotropical innovation database clearly supports the flexible

stem hypothesis at all three taxonomic levels when innova-

tiveness is measured as uncorrected frequencies, and at the

levels of the family and superfamily when innovation frequen-

cies are corrected for research effort and phylogenetic signal.

Beyond the comparison of innovation rates in the wild, however,

a more complete understanding of innovativeness requires

experimental assays that can be transferred to captivity.

Problem-solving tasks, especially those that involve the removal

of obstacles blocking access to food, have proved useful for this

[22]. It was both Darwin’s finch innovativeness in the wild and

their strong performance in problem-solving tasks [23–27] that

led Tebbich et al. [11] to apply the flexible stem hypothesis to

this clade. If our innovation data suggest that the stem is at the

level of the family and superfamily, we should be able to identify

other innovative Thraupidae and New World nine-primaried

oscines that also show enhanced problem-solving abilities.

The island of Barbados hosts two Emberizoid species

that are good candidates, the endemic bullfinch Loxigilla
barbadensis, and the Carib grackle Quiscalus lugubris fortirostris.

Both species are dietary generalists. Barbados shares many of

the features that facilitate innovative behaviour in finches of

the Galápagos: tameness owing to a historically low level of

predation, wide niches owing to low levels of competition

from a paucity of avian species, and limited resources owing

to small island size. Barbados lacks the dryness extremes that

make the Galápagos a particularly challenging environment,

but it has an additional feature that favours behavioural plas-

ticity: intense anthropogenic modification of the original

environment, providing birds with many novel habitats and

food sources as a result of urbanization and agriculture.

Several studies in the field and in captivity have docu-

mented the opportunism, innovativeness and problem-

solving abilities of L. barbadensis and Q. lugubris fortirostris.
We briefly review them here. In the field, Carib grackles

take dry food pellets from dog bowls and soften them by dip-

ping them in water ([28]; figure 4a). Some individuals steal

the dunked pellets when they are dropped in water by a

conspecific (figure 4b), and the frequency of dunking is deter-

mined by social (flock size, theft) and energetic (distance to

water, consumption time of dunked versus dry food) costs

and benefits [28–30]. The relationship between dunking

and stealing follows the frequency-dependent payoffs of a

producer–scrounger game [30]. Barbados grackles have

been seen foraging for dead insects under the windshield

wipers of parked cars, as well as passing bread and rice to a

begging juvenile through the wire mesh of its cage during

captive experiments [31]. Grackles were also observed several

times eating fish remains at the Payne’s Bay fish market

(St-James; figure 4c). This behaviour is typical of cattle egrets

in Barbados (Oistins and Bridgetown fish markets) and else-

where, but has not been seen before or described in

Q. lugubris. The Carib grackle is not the only innovative Quis-

calus species: in North America, the genus totals 19

http://rstb.royalsocietypublishing.org/
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Figure 6. Problem-solving in Barbados bullfinches. (a) Opening a box containing seed in the field. (b) Lifting the lid on a cylinder containing seed in the field. (c) In
captivity, pulling a stick out of a tunnel to open a cylinder containing seed. (d ) Opening the three-step chest task (see also the electronic supplementary material,
movie S3). (e) String pulling.
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innovations [19], making it the second most innovative

Passerine genus after Corvus in that part of the world.

In field experiments, bullfinches and grackles were the fast-

est of five tested species (Molothrus bonariensis, Zenaida aurita
and Columbina passerina were the others) to open a problem-

solving apparatus [32]. Bullfinches and grackles were also the

least neophobic of the five species. Bullfinches further proved

bolder than bananaquits Coereba flaveola in experiments

where dishes of dissolved sugar were offered in the field [33].

Barbados bullfinches take and pierce packets of refined sugar

from restaurant tables ([34,35]; figure 5a). Investigations

of this behaviour provide the first direct evidence of the inde-

pendent emergence of the same behavioural innovation in

different individuals in different places [35]. Barbados bull-

finches open the lids of sugar jars (figure 5b and electronic

supplementary material, movie S1), steal cream from jugs on

terraces (figure 5c and electronic supplementary material,

movie S2) and reach for food in deep trash bins (figure 5d ).
Untrained individuals readily solve obstacle removal tasks

in the wild (figure 6a,b). In captivity, both bullfinches and

grackles perform well on problem-solving tasks like the two-

step ‘tunnel task’ ([36]; figure 6c), where birds have to pull a

stick out of a transparent tunnel to gain access to a plastic con-

tainer and then flip a lid to obtain the reward, or the three-step

‘chest task’ (figure 6d and electronic supplementary material,

movie S3), where the birds have to displace a wooden stick

to unlock a metal latch, then push or pull to open the latch

and finally push the base of the box to open it. Finally, both

Barbados bullfinches and Carib grackles spontaneously

solve the string-pulling test ( J. N. Audet, S. Ducatez and

L. Lefebvre 2016, unpublished data; figure 6e), which is con-

sidered by some to involve an understanding of cause–effect

relationships [37–39].

The ease with which Carib grackles and Barbados bull-

finches can be tested in captivity has provided insights into

differences in problem-solving between individuals and

http://rstb.royalsocietypublishing.org/
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populations. At the population level, Barbados bullfinches

from urbanized areas perform better in problem-solving

tasks compared with rural individuals [36]; urban bullfinches

are also bolder and have a stronger immune response than

rural ones. At the individual level, Carib grackles that

responded to movements of the obstacle by redirecting their

probes from the centre of the apparatus to its edges were

more successful at solving the problem [40]. Interestingly, indi-

vidual differences in grackle obstacle removal performance are

negatively correlated with discrimination learning perform-

ance: birds that are fast at obstacle removal are also fast at

making discrimination choices, good or bad, making more

errors in the process and thus reaching the learning criterion

later [41]. This surprising negative relationship between tasks

can be reconciled as a coherent individual strategy that favours

different aspects of a single speed–accuracy trade-off [42],

where better problem-solvers rapidly interact with a variety

of stimuli that lead to obstacle removal [40], but also to higher

error rates in situations where wrong choices are penalized.

One of the most intriguing opportunities offered by Ember-

izoid variation in innovativeness in Barbados is the sharp

difference between L. barbadensis and its closest phylogenetic

relative on the island [2,5,7], the black-faced grassquit Tiaris
bicolor, a granivorous species that eats small seeds. Barbados

bullfinches are extremely tame, neophilic and opportunistic,

but grassquits, by contrast, do not approach novel patches of

provisioned seed or anthropogenic sources of food [43]. Both

L. barbadensis and T. bicolor are territorial in Barbados and

both feed on seeds in similar environments, but the sharp

difference in their opportunism, if associated with differences

in problem-solving [42], might yield important insights

into the evolution of cognitive divergence between species

otherwise matched for phylogeny, sociality and diet.
4. Conclusion
Our study provides clear evidence for high innovativeness at

all levels of the nested phylogeny leading to Darwin’s finches,

with the family level providing the most robust results on both

innovation frequency and rate corrected for research effort.

This supports the suggestions independently derived from

research on cognition [11], molecular phylogenetics [5,7,8]

and taxonomic diversity [4] that the higher stems from which

Darwin’s finches descend are also flexible. Observations and

experiments in the field, as well as studies done in capti-

vity, show that members of the Emberizoidea superfamily in

Barbados are good model species for the experimental study

of innovativeness and problem-solving. The high level of evol-

utionary radiation that accompanies behavioural plasticity in
Galápagos finches does not characterize Lesser Antillean pas-

serines in general [44], but rapid speciation does seem to

have characterized the divergence of L. barbadensis from the

Loxigilla noctis stem found on nearby islands [45]. Intriguingly,

one of the key traits that differentiates L. barbadensis from

L. noctis is shared with Barbados populations of Q. lugubris
fortirostris: the two species have evolved monomorphic plu-

mage in Barbados, while populations on other islands are

sexually dimorphic. However, monomorphic plumage has

evolved in different directions in the two species: L. barbadensis
males have lost the black and red plumage that L. noctis shows

on other islands and converged on the female’s brown color-

ation, while Q. lugubris fortirostris females have lost the

brown plumage they show on other islands and converged

on the male’s black.

The Emberizoids of Barbados, in particular L. barbadensis
owing to its close phylogenetic proximity with Darwin’s

finches, offer a unique opportunity to study the flexible stem.

Barbados is more accessible and less ecologically fragile than

the Galápagos. Many avian species are extremely tame there

and adapt well to captive testing, and are thus ideal models

to investigate variation in innovativeness, and more generally,

cognition in wild birds. By combining experimental studies of

wild birds kept in captivity for short periods of time and large-

scale comparative analyses quantifying innovative behaviours

in the wild, we provide strong support for the flexible stem

hypothesis. The high innovativeness and problem-

solving abilities of Emberizoidea are likely to have been a

major driver of the high diversification rate, adaptive radiation

and colonization abilities observed in this superfamily. High

innovativeness is associated with high colonization success

across the entire class of birds [46] and the combination of

the two might also have been a factor in the planetary radiation

of the genus Homo [47].
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