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ABSTRACT

To date, studies examining the impact of agricul-

ture on freshwater systems have been spatially

confined (that is, single drainage basin or regional

level). Across regions, there are considerable dif-

ferences in a number of factors, including geology,

catchment morphometry, and hydrology that affect

water quality. Given this heterogeneity, it is un-

known whether agricultural activities have a per-

vasive impact on lake trophic state across large

spatial scales. To address this issue, we tested

whether the proportion of agricultural land in a

catchment (% Agr) could explain a significant

portion of the variation in lake water quality at a

broad inter-regional scale. As shallow, productive

systems have been shown to be particularly sus-

ceptible to eutrophication, we further investigated

how lake mean depth modulates the relationship

between % Agr and lake total phosphorus (TP)

concentration. We applied both traditional meta-

analytic techniques and more sophisticated linear

mixed-effects models to a dataset of 358 temperate

lakes that spanned an extensive spatial gradient

(5�E to 73�W) to address these issues. With meta-

analytical techniques we detected an across-study

correlation between TP and % Agr of 0.53 (one-

tailed P-value = 0.021). The across-study correla-

tion coefficient between TP and mean depth was

substantially lower (r = )0.38; P = 0.057). With

linear mixed-effects modeling, we detected among-

study variability, which arises from differences in

pre-impact (background) lake trophic state and in

the relationship between lake mean depth and lake

TP. To our knowledge, this is the first quantitative

synthesis that defines the influence of agriculture

on lake water quality at such a broad spatial scale.

Syntheses such as these are required to define the

global relationship between agricultural land-use

and water quality.
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quality; phosphorus; eutrophication; morphome-
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INTRODUCTION

Eutrophication of surface waters remains a persis-

tent and extensive problem, and is one of the pri-

mary threats to global water quality (UNEP 2007).

It often results in biodiversity losses, reduced re-

creation potential, and diminished ecosystem ser-

vices (for example, loss of potable water) causing

both ecological and economic hardship for sur-

rounding communities (Pretty and others 2003).

Understanding and managing the causes of eutro-

phication has been a primary goal of limnological

research over approximately the past 40 years (for

example, Vollenweider 1968; Dillon and Rigler

1974; Schindler 1974; Downing and McCauley

1992).

Human activity has led to the nutrient enrich-

ment of many freshwater systems around the world

(Smith and others 1999). Point-source loading (for
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example, from sewage effluent) was first recognized

as an important cause of lake eutrophication. Miti-

gation of these sources has not always successfully

reduced surface water nutrient concentrations and

algal growth, however, as diffuse nutrient inputs

(for example, agricultural run-off) are often sub-

stantial (Hamm 1976; Ryding 1981; Kronvang and

others 1993, 2005). In the second half of the 20th

century, researchers noted that although progress

had been made in curbing point sources of nutrient

loading to surface water in many parts of the world,

non-point contributions remained a widespread

and often overlooked cause of eutrophication

(Carpenter and others 1998).

Establishing the impact of agricultural runoff on

the quality of limnetic systems is crucial as nearly

24% of the world’s land area is currently subjected to

some form of agricultural management (Millennium

Ecosystem Assessment 2005). With exponential

human population growth, increasing consumer

demand, and an increase in agricultural land cover

averaging 2.2% per year, there is little indication of a

future decrease or stabilization in agricultural pro-

duction (FAOSTAT 2007). If these trends persist, it is

predicted that approximately 1 billion hectares of

land will be converted to agriculture within the next

40 years (Tilman and others 2001). If a significant

global relationship between water quality and agri-

cultural land does in fact exist, this predicted increase

in agricultural practices will have important reper-

cussions on the quality of inland water bodies

worldwide.

Nearly a decade has passed since Carpenter and

others’ (1998) review paper was published, stress-

ing the importance of diffuse loading on water

quality. This article was a culmination of many

years of work in the field and acknowledged a focal

shift in interest from point-source effects to those of

diffuse nutrient loading. Since this publication, the

scientific community has continued to demonstrate

a growing interest in issues relating to effects of

diffuse loading and eutrophication. For example,

by conducting a literature search based on the five

journals with the greatest number of hits in the ISI

Web of Science for the keywords ’agriculture’ and

’water quality’, we noted a significant increase in

the proportion of articles published each year

between 1990 and 2006 (r = 0.86; P < 0.001).

Interestingly, over 93% of the studies identified

were conducted at a local or regional scale (that is,

at the lake/catchment or landscape scale). Whereas

these studies have advanced our understanding of

the effects of diffuse nutrient loading to inland

waterbodies and enable us to make local-scale

predictions, their quantitative synthesis will ulti-

mately provide a general model to assess the

ubiquity of the impact of agriculture across

numerous regions. Such syntheses are critical as we

know that across regions there are numerous fac-

tors that can influence lake-water total phosphorus

(TP), including precipitation (Chang and others

1992; Soranno and others 1996), catchment mor-

phometry (Prairie and Kalff 1986; D’Arcy and

Carignan 1997; Ekholm and others 2000), soil

topology (Bennett and others 2001), and geology

(Dillon and Kirchner 1975). Hence, it is not obvi-

ous from localized studies what the effect of

agriculture is at a larger, inter-regional scale. Fur-

thermore, by addressing the variability of the im-

pact of non-point loading on water quality among

regions, we can better appreciate in which parts of

the world are lakes most susceptible to eutrophi-

cation as a result of agricultural land use.

The primary objective of this study is to test the

hypothesis that the percent of agriculture in a lake’s

catchment (% Agr) explains a significant fraction of

the variation in lake surface water TP concentra-

tions across studies. Because heterogeneity in

environmental conditions and background TP levels

may exist at such broad spatial scales, running a

simple linear regression between % Agr and TP for

all sites across studies is not an appropriate ap-

proach. This technique would not have taken into

account differences in baseline TP across regions.

Instead, we applied meta-analytical and mixed-ef-

fects modeling techniques to synthesize the overall

across-study effect of agriculture on water quality

based on study-specific correlations, and to address

the among-study variability, respectively.

We have also examined the effect of lake mean

depth given that early work by Vollenweider (1968)

recognized lake mean depth, a synthetic variable for

lake morphometry and water residence time, as an

important predictor of TP. Furthermore, shallow

lakes, by nature of their morphometry, are more

prone to the recycling of phosphorus from their

bottom sediments to surface waters (Kalff 2001).

Thus, we have defined what proportion of the

variability in TP that can be explained by lake mean

depth (Zmean) and % Agr in a lake’s catchment.

METHODS

Meta-Analyses

To quantify the impact of diffuse agricultural

nutrient loading on the quality of inland lakes at an

inter-regional scale (Figure 1), we conducted a

meta-analysis. Based on a review of the literature,

we identified nine studies reporting the average
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summer TP within lakes and % Agr. Three addi-

tional datasets, currently unpublished or in press,

were also included in our analysis. One of the 12

studies, however, had a very small dataset (Smal

and others 2005; sample size = 5) and thus was not

included in further analyses. We conducted our

analyses on average summer TP data, which for

each lake represents the mean TP across the open

water season (that is, values averaged between

April and November for all studies with the excep-

tion of the New Zealand dataset where samples

were collected during the austral summer). TP was

used as a proxy for water quality because it has been

shown to be a strong predictor of algal growth

(chlorophyll a) across a range of total nitrogen: total

phosphorus ratios (Prairie and others 1989). For

each study, the % Agr variable represents the per-

centage of catchment land under pastoral grazing

and row cropping (not all studies, however, distin-

guished different categories of agriculture). From

our literature review, we noted that % Agr was

reported more often than total area of agricultural

land (Agrarea). To assess whether % Agr was a more

appropriate metric of diffuse agricultural nutrient

loading, we conducted a comparative analysis of

the strength of the relationship between TP-%

Agr to that of TP-Agrarea. Lake mean depth data

were available for ten of these studies, which

allowed us to test the influence of Zmean as well as %

Agr on TP.

The focus of our article is on diffuse nutrient

loading. Thus, to minimize the influence of point-

source nutrient loading, we eliminated sites

with greater than 10% urban land cover in the

Figure 1. Map of studies used in meta-analysis and mixed-effects modeling: (1) Otago, New Zealand (Galbraith and Burns

2007); (2) Iowa (Mississippi River Basin), USA (Arbuckle and Downing 2001); (3) Northeastern USA (Whittier and others

2002); (4) Eastern and Central Alberta, Canada (Taranu and Gregory-Eaves, this study); (5) Switzerland (Müller and others

1998); (6) Southern and Central Finland (Ekholm and Mitikka 2006); (7) Ireland (Chen and others 2008); (8) Central and

Northern Jutland, Denmark (Vander Zanden and others 2005); (9) Central and Eastern Ontario, Canada (Paterson and others

2006); (10) Southeastern Québec, Canada (Prairie and Parkes unpublished); and (11) Connecticut, USA (Norvell and others

1979). Study regions were numbered according to the strength of their correlation coefficient between TP and % Agr (see

Table 1).
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catchment. The land-cover data were not suffi-

ciently detailed to determine whether urban land

cover was greater than 10% in only two datasets.

In these cases, however, the authors reported

qualitatively in their article that the urban land

cover was negligible (Arbuckle and Downing 2001;

Prairie and Parkes unpublished). Once the datasets

were screened for possible point-source nutrient

loading, natural log or square-root data transfor-

mations were applied to the necessary study lake

sets to normalize the distributions. All Zmean values

were log transformed to obtain approximate nor-

mal distributions. For the LMMs, however, com-

mon natural log transformations were applied

across all study sets as the entire dataset is analyzed

at once when using this statistical method.

For two datasets, one from Northeastern USA

and the other from Midwestern USA (Arbuckle and

Downing 2001; Whittier and others 2002), we

found that the % Agr and TP data had skewed

distributions and could not be corrected with log or

square-root transformations. In the Northeastern

USA dataset (with >10% urban sites removed), %

Agr varied between 0% and 90%, but 217 out of

317 lakes had 1% or less Agr in their catchments

(Whittier and others 2002). To obtain a more even

distribution, we randomly sub-sampled lakes from

this dataset following a block design (that is, ran-

domly selecting an equal number of lakes within

intervals of 15% Agr increments). Likewise, the %

Agr distribution of the Midwestern USA study was

strongly skewed with a median of 91% Agr. In a

similar random sub-sampling procedure, six lakes

from equal-sized % Agr intervals were kept for our

meta-analyses and mixed-effects models (Arbuckle

and Downing 2001). Bootstrap resampling with

replacement (1000 simulations) demonstrated that

the randomly chosen subsets did not influence our

results. All analyses described below are based on

these modified datasets.

The meta-analysis of this large dataset enabled

us to not only determine the presence of an effect,

but also to quantify its magnitude, known as the

across-study effect size (Rosenberg and others

2000). The effect size for each study (k) was cal-

culated with the use of the Fisher’s Z-transforma-

tion (Zk; equation 1), where r corresponds to the

within-study correlation coefficient obtained when

TP is correlated to either % Agr, Agrarea, or Zmean.

The variance for each study (Vk; equation 2) is

inversely proportional to the study sample size (n).

To calculate both the effect size and variance for

each study, we used the MetaWin software

(Rosenberg and others 2000) to apply the follow-

ing formulae:

Zk ¼
1

2
ln
ð1þ rÞ
ð1� rÞ

� �
ð1Þ

Vk ¼
1

ðn� 3Þ ð2Þ

The overall across-study effect size (Ê) is calcu-

lated by summing the individual study effect sizes

(Zk), weighted by their variance (Vk; equation 3).

Ê ¼
P

k wkZkP
k wk

ð3Þ

where wk = 1/Vk. Using these formulae, we sum-

marized the overall relationship between agriculture

Table 1. TP-% Agr and TP-Zmean Correlation Coefficients, Study Sample Sizes, and Correlation P-Values

Study Correlation between %

Agr and TP

Correlation between Zmean

and TP

r n P-value r n P-value

(1) Galbraith and Burns (2007) 0.15 24 0.233 – – –

(2) Arbuckle and Downing (2001) 0.37 30 0.022 )0.47 30 0.005

(3) Whittier and others (2002) 0.40 25 0.023 )0.38 25 0.031

(4) Taranu and Gregory-Eaves (this study) 0.43 36 0.005 )0.56 33 0.0003

(5) Müller and others (1998) 0.47 55 0.0002 )0.18 55 0.099

(6) Ekholm and Mitikka (2006) 0.50 18 0.017 )0.68 13 0.005

(7) Chen and others (2008) 0.56 75 <0.0001 )0.16 75 0.082

(8) Vander Zanden and others (2005) 0.58 22 0.002 )0.41 22 0.030

(9) Paterson and others (2006) 0.65 35 <0.0001 )0.66 35 <0.0001

(10) Prairie and Parkes (unpublished) 0.73 20 0.0001 )0.80 15 <0.0001

(11) Norvell and others (1979) 0.86 18 <0.0001 0.13 18 0.310

r = correlation coefficient and n = sample size, TP = summer average total phosphorus concentrations (lg/l) of surface waters, % Agr = percent of agricultural land cover in
the lake catchment, and Zmean = lake mean depth in meters.
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(% Agr and Agrarea), mean lake depth (Zmean), and

water quality (TP).

Linear Mixed-Effects Models

Although meta-analyses determine the strength of

inter-regional correlative relationships, information

on data distributions and within-study regression

parameters is inevitably lost. Furthermore, as it is not

possible to calculate a correlation coefficient among

three variables (that is, Zmean as a second covariate in

addition to % Agr), we could not conduct a meta-

analysis of the multiple TP, % Agr, and Zmean rela-

tionship. To further advance our understanding of

the among-study variability, we applied linear

mixed-effects modeling (LMM) to test whether the

slopes and intercepts of the relationship between %

Agr, Zmean, and TP differed across studies. These

analyses were conducted using the R statistical

software (R Development Core Team 2007) and

package ‘‘lme4’’ provided by Bates (2005).

LMMs often provide improvements over ordin-

ary least squares (OLS) regressions because the

former include within-study model parameters that

control for structure at the study level. More spe-

cifically, LMMs account for variability due to

among-study differences in the dataset. In contrast,

OLS simply incorporates this structure into the

residual variance, which can lead to an inflation of

the within-study variability estimate. LMMs con-

tain both common (that is, fixed) and flexible (that

is, random) terms, where the common effects are

the across-study parameters and the flexible effects

are the within-study parameters (Pinheiro and

Bates 2004). An example of an LMM with a com-

mon predictor variable (that is, same slope across

all studies) and a flexible intercept term (that is,

varies among studies) is given by the equation

Yjk ¼ XjkbþUk þ Ejk ð4Þ

where the indices j and k represent the lake and

study number, respectively, b is the common

across-study regression slope, and Uk is a flexible

variable assigned to study k. Thus each study is

allocated a different intercept value. If a meta-

dataset has structure at the study level, model (4)

will have a smaller error variance than the OLS

model (5) that does not allow for variance of

intercepts.

Yjk ¼ Xjkbþ Ejk ð5Þ

The simplest model examined with our meta-

dataset (where j = 1 to 358) is the OLS regression

for which TP is estimated by the mean TP value

across all studies (that is, estimating the common

across study intercept, which is the expected value,

E[Yjk], of TP) (equation 6; Table 2).

Our first LMM assessed the variability of intercept

coefficients among studies by introducing a flexible

term U0k, which allowed for variation in mean Yjk

(equation 7; Table 2). As we were interested in the

degree to which the percent of agriculture in the

catchment explained the variance in limnetic TP,

we further added a common predictor variable (%

Agrjk), corresponding to % Agr, to examine the

reduction in residual variance when a common

slope (b1) was included in the model in addition to

the flexible intercept term (U0k) (equation 8;

Table 2). Finally, to assess whether the % Agr slope

coefficients varied considerably among studies, we

examined the change in residual variance when, in

addition to a flexible intercept (U0k) and a common

slope (b1), we included a flexible study slope

parameter for % Agr (U1k) (equation 9; Table 2).

Because the response of lakes to external loading

is often dependent on lake depth (Borsuk and

others 2001), we included mean lake depth as an

additional independent variable in a second set of

LMMs. This allowed us to test whether there was

Table 2. Mixed-Effects Model Equations and Results

Model Equation b0 s0k b1 s1k b2 s2k r AIC BIC

6 Yj ¼ b0 þ Ej 3.25 – – – – – 1.00 936 944

7 Yjk ¼ b0 þU0k þ Ejk 3.33 0.72 – – – – 0.75 848 856

8 Yjk ¼ b0 þ%Agrjkb1 þU0k þ Ejk 2.63 0.61 0.25 – – – 0.67 772 783

9 Yjk ¼ b0 þ%Agrjkb1 þ%AgrjkU1k þU0k þ Ejk 2.66 0.68 0.25 0.08 – – 0.66 774 793

10 Yjk ¼ b0 þ%Agrjkb1 þ Zmean;jkb2 þU0k þ Ejk 3.18 0.60 0.26 – )0.36 – 0.64 669 684

11 Yjk ¼ b0 þ%Agrjkb1 þ Zmean;jkb2 þ Zmean;jkU2k þU0k þ Ejk 3.27 0.86 0.26 – )0.44 0.21 0.63 665 687

Yjk, % Agrjk, and Zmean,jk are the respective observed TP, % Agr, and Zmean for lake j located in study site k. Ejk is the model error. The following parameters are used in the
table: b0 = intercept estimate; s0k = standard deviation of the flexible intercept term U0k; b1 = % Agr slope estimate; s1k = standard deviation of the % Ag flexible slope term
U1k; b2 = Zmean slope estimate; s2k = standard deviation of the Zmean flexible slope term U2k; r = standard deviation of the residual error; AIC = Akaike’s Information
Criterion; BIC = Bayesian Information Criterion.
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variability in the relationship between TP and Zmean

among studies. Here we investigated whether the

common slope for Zmean (b2) resulted in a signifi-

cant model improvement relative to the model

with a common across-study % Agr slope (b1) and

a flexible intercept term (U0k) (that is, comparing

equations 8 and 10; Table 2).

To assess the interplay between lake depth and

water quality among study regions, we examined

whether the Zmean slope (b2) varied among studies

by introducing a flexible study slope parameter for

Zmean (U2k). Therefore, we asked whether the

individual study slopes associated with Zmean had a

quantifiable variance (equation 11; Table 2).

To define which of the above models was the

‘‘best model’’ (Kass and Raftery 1995), we used

parsimonious model selection criteria, namely the

Akaike’s Information Criterion (AIC) and the

Bayesian Information Criterion (BIC). Both criteria

are based on a compromise between model fit and

complexity, where the fit always increases as more

parameters are added; however, the addition of too

many parameters (that is, increased complexity)

results in non-generalizable models (Johnson and

Omland 2004). The lowest AIC provides us with an

indication of which model is the best asymptotic

approximation to the true model, but tends to

overestimate the number of required model

parameters. The lowest BIC, in contrast, highlights

the model with the highest probability of being

correct but penalizes more severely models with a

large number of parameters.

RESULTS

Variation in Water Quality, Agriculture,
and Lake Depth Across Studies

We incorporated data from 11 studies (covering

a total of 358 lakes), which spanned extensive

ranges in TP (0–897 lg/l; median = 22 lg/l), % Agr

(0–100%; median = 29%), Agrarea (0–101700 km2;

median = 2.5 km2), and Zmean (0.7–28.2 m; med-

ian = 4.6 m) in our analyses. As several studies

provided more information on the type of agricul-

ture, we know that at least a few regions were

dominated by pastureland (namely Galbraith and

Burns 2007; Chen and others 2008; Prairie and

Parkes unpublished), whereas others were pre-

dominantly cropland (namely Arbuckle and

Downing 2001; Vander Zanden and others 2005;

Ekholm and Mitikka 2006). Given this variability in

agricultural land-use practices and in the data

ranges represented across studies, we, not surpris-

ingly, found a broad spectrum of correlation

coefficients (r = 0.15–0.86) when the TP-% Agr

relationship was assessed with linear correlation for

each study individually (Table 1).

Meta-Analyses

In our first meta-analysis, we examined the general

TP-% Agr relationship, for which we observed an

across-study correlation coefficient of 0.53 (one-

tailed P-value = 0.021). The effect size of the TP-

Agrarea relationship was considerably weaker and

non-significant (r = 0.38, P = 0.059). This finding

is supported by the work of Prairie and Kalff

(1986), who demonstrated that the TP exported per

unit catchment area decreases as the area of the

catchment increases. We therefore disregarded

Agrarea from further analyses.

In comparing the effect size of the TP-% Agr

relationship to that calculated for the TP-Zmean

relationship (r = )0.38, P = 0.057), we note that

the former is substantially stronger. This observa-

tion may initially seem unusual because the

strength of correlation coefficients for both the

TP-% Agr and TP-Zmean relationships were similar

(Table 1). The latter, however, had a bimodal fre-

quency distribution of correlation coefficients (that

is, higher occurrence of small r-values; Table 1). As

such, lake mean depth was a good predictor of TP in

some regions, but performed poorly in other parts of

the world. We suggest that the high degree of var-

iability in the TP-Zmean relationship across regions

may have led to a relatively weak inter-regional

model. The TP-Zmean and TP-% Agr relationships

further differed in that the individual slope and

correlation coefficients of the former relationship

were negative, whereas those of the latter rela-

tionship were positive. Finally, we are confident

that our two independent variables, % Agr and

Zmean, explain a separate amount of the variation in

TP as we failed to detect multicollinearity between

these two variables (that is, a meta-analysis of the

correlation between % Agr and Zmean demonstrated

a non-significant across-study correlation coeffi-

cient; r = 0.12, two-tailed P-value = 0.34).

Mixed Effects Models: Variability
in the Correlative Relationship Between
TP and % Agr

By comparing the OLS regression model results

(equation 6) to those of an LMM with a flexible

intercept term (equation 7), we noted that both the

AIC and BIC decreased when the variability due to

study structure was specifically incorporated into

the model (equation 7), instead of being lumped
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into the random error term (equation 6). Thus, the

LMM with a flexible intercept term for each study

(equation 7) significantly improved TP predictions

relative to the OLS model (likelihood ratio test =

188.3; P < 0.001) and led to a decrease in the

residual standard deviation (Table 2).

The second mixed-effect model examined,

allowing for a flexible intercept term and a com-

mon % Agr slope (equation 8), demonstrated a

significant across-study common slope (b1 = 0.25;

P < 0.001) as well as a decrease in the flexible

intercept (U0k) and model error (Ejk) variances. This

implies that each individual study has the same

slope coefficients (that is, comparable increases in

TP per unit increase in % Agr), but different

intercept coefficients (that is, regional variability in

the pre-impact TP concentrations). The LMM pre-

dicted values are thus a compromise between the

predicted values obtained when running separate

OLS analyses for each study and those obtained

when running a single OLS analysis for the entire

dataset (Figure 2). The mixed-effects estimates are

often referred to as shrinkage estimates as they

‘shrink’ the individual OLS estimates toward the

common population estimate, providing robustness

to individual outlying behavior (Pinheiro and Bates

2004). The shrinkage toward the common term is

particularly noticeable in the Finnish dataset (Fig-

ure 2; Ekholm and Mitikka 2006).

As the % Agr slope coefficients showed minimal

variation across studies, incorporating a flexible %

Agr slope term into our mixed-effect model did not

result in any sizeable reduction in the residual

variance (Table 2). Therefore, model 9 did not

perform significantly better than model 8

(v2 = 1.29; P = 0.524). An ANCOVA of the TP-%

Agr relationship using study as a categorical vari-

able, however, demonstrated that at least one slope

differed significantly from others (P = 0.031).

Mixed-Effects Models: Variability
in the Correlative Relationship Between
TP, Zmean, and % Agr

Mean lake depth, a variable with the potential to

influence a lake’s response to agricultural activity,

Figure 2. Comparison of

fitted lines for the TP versus

% Agr relationships

obtained when running

separate OLS analyses for

each study to the fitted

lines obtained when

running a mixed-effects

model.
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was found to be a significant predictor of TP in our

meta-analysis. By including both % Agr and Zmean

as common slope variables in our LMMs (equation

10), we noted a further reduction in the residual

variance (Table 2). The common slope for Zmean

was significant (b2 = )0.4; P < 0.001) and both the

AIC and BIC decreased when this variable was in-

cluded (Table 2).

We also found that the effect of lake depth on

epilimnetic TP differed across regions as the rate of

decrease in TP per unit increase in Zmean varied

among studies, and thus model 11 with a flexible

Zmean slope term was a significant improvement

over model 10 (v2 = 8.03; P = 0.018). This differ-

ence in Zmean slope coefficients is evident when

comparing the slopes of the TP-Zmean relationship

obtained from the study-specific OLS analyses to

the common across-study LMM slope (Figure 3).

The lower AIC for model 11 also suggests that this

model is more robust than model 10. The BIC,

however, would suggest the opposite scenario. We

believe that the presence of a heterogeneous (that

is, bimodal) distribution of the flexible Zmean slope

coefficients may have resulted in a slight increase

in the BIC of model 11 as this second information

criterion penalizes more severely for violations of

model assumptions (such as non-normality) than

does the AIC. Ultimately, the AIC and BIC values

for each model are still quite similar and thus the

difference, albeit significant, is relatively minor.

DISCUSSION

Meta-Analyses and Mixed-Effect Models

To date, numerous factors have been identified as

drivers of eutrophication, both at the within-lake

scale (that is, due to basin morphometry and tro-

phic interactions) and at the catchment scale. At

the catchment level, different sources of non-point

agricultural loading (for example, row-cropping or

animal husbandry; Arbuckle and Downing 2001),

Figure 3. Comparison of

fitted lines for the TP versus

Zmean relationships

obtained when running

separate OLS analyses for

each study to the fitted

lines obtained when

running mixed-effects

models.
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catchment morphometry (Prairie and Kalff 1986;

D’Arcy and Carignan 1997; Ekholm and others

2000), as well as differences in soil erosion, geo-

morphology, and hydrology (Reynolds and Davies

2001) can further affect limnetic nutrient concen-

trations. Despite these sources of environmental

heterogeneity at broad, inter-regional spatial scales,

we have shown through our meta-analysis that %

Agr explains 28% of the variation in TP, which is

significant at the a = 0.05 level. This result under-

scores the earlier, more qualitative conclusion

drawn by Carpenter and others (1998).

As we obtained negative values for the slope

coefficients of the TP-Zmean relationships and posi-

tive values for the TP-% Agr slope coefficients, we

can conclude that at this inter-regional scale,

shallow lakes in agriculturally dominated catch-

ments are most likely to have higher TP concen-

trations. Effects of internal nutrient loading from

the sediment to the overlaying water column are

likely governing this heightened enrichment of

shallow lakes (Scheffer 1998). Furthermore, given

that lakes with smaller mean depths tend to be

located in catchments with low-lying topography,

longer contact times between runoff and agricul-

tural land may lead to increased TP export from the

land in shallow systems (Kalff 2001).

The LMMs provided additional information

regarding the structure of the relationships in our

meta-dataset. In particular, we detected significant

variability in the intercept coefficients of the TP-%

Agr relationship, which confirms that across-study

differences in background (that is, pre-impact) and

internal loading exist. In contrast, our LMM de-

tected no differences in slope coefficients, and thus

the increase in epilimnetic TP per unit increase in

agricultural cover was comparable across studies.

The latter result was initially surprising as we ex-

pected a larger degree of variability in the effect of

agriculture given regional differences in agricul-

tural practices and geomorphologies. When we

applied an ANCOVA to test for significant differ-

ences in slopes among studies, we found that at

least one study slope differed significantly from

others (P < 0.05). In our LMMs these differences

were not observed. It is important to note, how-

ever, that the mixed-effects fitted values, which are

based on both the common (fixed) and flexible

(random) coefficient values, represent a compro-

mise between the fit of the OLS regression coeffi-

cients, run separately for each study, and the

mixed-effects common estimate associated with the

entire dataset (across-study variable). As a result,

the goal of mixed-effects modeling is to determine a

general across-study slope and assign individual

study variability relative to the common slope.

Overall, we found merit in taking the extra step

and applying an ANCOVA when no difference in

slopes is detected with the LMM.

The observed among-study variability in the TP-

Zmean intercept and slope coefficients indicates that

certain lake sets have higher average summer TP

concentrations at given Zmean values with respect to

other regional datasets, and that different rates of

change in TP will be observed per unit increase in

Zmean. Given that external nutrient loading results

in increased P accumulation rates to the sediment

pool of lakes (Søndergaard and others 2002), and

that total P retention by lake sediments is limited

(Marsden 1989), we expect that lake sets under

more severe and/or prolonged nutrient loading will

be more eutrophic. A regression of the study slope

coefficients from the TP-Zmean relationships against

the median study TP values provides further sup-

port for this expectation; lake sets with steeper

slopes tended to be more eutrophic (r = 0.51,

P = 0.06). We recognize, however, that across-

study variability in the TP-Zmean relationship may

also result from additional factors, such as differ-

ences in the lake flushing rates and morphometry

(Kalff 2001), climatic differences between systems

that impact lake stratification and thus the oxida-

tion status of sediments (Osgood 1988; Stefan and

Fang 1994), and reduced iron availability (Gächter

and Müller 2003).

Implications for Ecosystem Management

Given the predictions made by Tilman and others

(2001) of an 18% increase (above 1998 levels) in

the amount of agricultural land worldwide by

2050, and our finding of a significant relationship

between land use and water quality at an inter-

regional scale, we can anticipate an increase in

nutrient concentrations of lakes in the future.

Furthermore, the observed across-study variation

in our regression coefficients suggests that there

will be regional differences in the response to

expansions in agricultural land cover. According to

our LMM (model 11), we would expect the Cana-

dian Prairies and Northern Europe to be among the

first of all regions studied to show signs of eutro-

phication (for example, cyanobacterial blooms,

bottom-water anoxia) with future land use change

as they are naturally more nutrient rich (that is,

larger intercept coefficients).

Although we have advanced our understanding

of the relationship between agriculture and water

quality across large scales, there remains a need to

conduct studies in tropical regions if we are to
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develop a robust estimate of the global impact of

agriculture. More emphasis on the effect of agri-

culture in the tropics is essential because these

regions currently have a large potential for land

cultivation, but are likewise expected to rapidly

lose soil fertility once the land is devoted to grow-

ing crops (Ramankutty and others 2002). As such,

a better understanding of the TP-% Agr relation-

ship in these regions is needed. There is also a need

to examine how specific land-management tech-

niques influence the relationship between % Agr

and TP. For instance, several studies have shown

that adopting a buffer zone around water bodies is

one way of reducing nutrient export from land

(Muscutt and others 1993; Sharpley and others

2000; Hickey and Doran 2004). Thus, when a suf-

ficient number of such studies have accumulated,

one could address how effective this technique is at

an inter-regional scale. As our demand for both

food and freshwater water is predicted to increase,

and with the knowledge that agricultural activities

have a significant effect on water quality across

broad spatial scales, land management options such

as buffer strips need to be more closely examined if

we are to meet our future global demands.

CONCLUSIONS

We have shown with our application of meta-ana-

lytical techniques that the percent of agricultural

land within a watershed and lake mean depth

independently explain a significant proportion

of the variation in limnetic TP concentration

(explaining 28 and 16% of the variance, respec-

tively). Given the broad geographic range repre-

sented by our datasets, it is fair to assume that the

conversion of land to agriculture is an activity that

will significantly increase summer TP concentrations

in temperate lakes. With the use of linear mixed-

effects modeling, we found that among-study vari-

ability arises from differences in pre-impact (back-

ground) lake trophic state and in the relationship

between lake mean depth and lake TP. Therefore,

some regions will show signs of lake eutrophication,

such as cyanobacterial blooms and bottom-water

anoxia, more rapidly than others. The identification

of lakes that are the most susceptible to eutrophica-

tion from agricultural activity is critical for optimal

management of competing ecosystem services (that

is, provision of food and freshwater). Given the rise

in food production that is expected to take place to

meet the needs of an ever-growing human popula-

tion, determining the global impact of agricultural

development on freshwater ecosystems and identi-

fying the most impacted regions is all the more

pressing.
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