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ON BR'EEDIWG MOR'E THAN OWCE 

Alberta  Recreation, Parlrc a n d  TTT~lcll~fe. Edmonton ,  A l b e ~ t a ,  Canacla 

Natural selection is the inevitable consequence of inherited differences in 
fitness. The fitness of a character is most adequately defined by its effect on the 
exponential rate of increase, r ,  whose properties are discussed below; selection 
will favor any heritable change which tends to increase r (see Charlesmorth 
1973). I n  recent years, several attempts have been made to apply the math- 
ematical theory of natural selection to life history phenomena, following the 
classic work of Cole (1954). Individuals following different life histories can have 
different fitnesses, and life histories tend to evolve whenever there is heritable 
variation in the timing of gene effect. I here attempt to analyze some of the 
problems faced by animals which breed more than once during their lifetimes. 

The existence of differences in fitness between alternative life histories may 
be expressed in one of two mays : as a ratio of fitnesses or as the factor by which a 
given parameter must be changed in one of the life histories in order to make 
them of equal fitness. I shall use f to refer to  the ratio of finite rates of increase: 
f = eri/er2 (r, > r,), and k to refer to the factor by which fecundity must be 
increased in the less fit life history, in order that both life histories will have the 
same fitness: k = b,/b, (r, = 7,). Thus, f and k take values of unity when the 
two life histories being compared are equivalent with respect to fitness or to 
fitness and fecundity, by definition. 

Algebraic symbols are defined in the text whenever a new concept is intro- 
duced; the most important are listed in table 1, where they may be compared 
with those used by previous authors. 

L. C. Cole (1954) atJtempted to discover how great an  increase in fitness is 
caused by breeding more than once. To do this, he specified a particular 
population model and then calculated the difference in the rate of increase r 
that would be caused by changing from a semelparous life history (breeding 
only once) to an  iteroparous mode of life (breeding repeatedly). The main 
features of his population model were that the population age structure was 
assumed to be constant and that there was no mortality a t  any time during 
life, except that semelparous animals died immediately after breeding. 

The intrinsic rate of natural increase, r, as originally defined by Lotka (1907), 
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TABLE 1 


Symbol Concept (1) (2) (3) (4) 

Population number 
Intrinsic rate of natural increase of 

population 
Finite rate of increase of population 
Age; refers the value of a parameter 

to animals of a particular age x o r z  x o r i  z 
Time; refers the value of a parameter 

to a particular time 
Age frequency; frequency of animals 

age x 
Age-specific fecundity ;mean number of 

female zygotes produced per female 
age x in a single reproductive attempt 

Birth rate; total number of newborn 
animals produced by a population in 
one period of time 

Age-specific survival; fraction of all 
those animals born in a given cycle 
still alive at  age x 

Age-specific rate of survival; fraction 
of all those animals age x which 
survive to age (x + 1) 

Age-specific rate of mortality; fraction 
of all those animals age x dying 
before age (x + 1) 

Fraction of animals born in a given 
cycle alive at  age a 

Rate of survival during first year of life 
Mean rate of annual survival of im-

mature animals 
Mean annual rate of survival of mature 

animals 
Age a t  first reproduction (maturity) 
a) Age a t  last reproduction 
b) Longevity; age beyond which sur-

vival is 0 
Natural logarithm 

SOURCE.-Col. 1, Cole 1954; col. 2, Gadgil and Bossert 1970; col. 3, Charnov and Schaffer 
1973; col. 4, Goodman 1974. 

is the infinitesimal rate of increase of a population with stable age structure in 
an  unlimited environment : it is the single real positive root of the equation: 

eCrx  l(x)b(x) dx, (1) 

where 1(x)is the rate of survival to age x,and b(x)is the number of female eggs 
produced per female age x ;w is the longevity, which can be taken to be in- 
finitely great without loss of generality. Although this equation was first 
derived for a population in an unlimited environment, it is valid for any 
population with stable age structure. The usage of r was confused by Birch 
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(e.g., Andrewartha and Birch 1954, p. 33), who used it to denote the actual rate 
of increase of a population in any environment, whether or not the population 
age structure mas stable : 

These two usages are of course equivalent in the case of a population with stable 
age structure. Lotka's usage has priority and is mathematically more tractable; 
Birch's usage, since it deals with achieved rates of increases, has more general 
validity in fitness equations. In  the absence of nomenclature to distinguish 
between the two usages, I use r to denote the rate of increase defined by equation 
(1) and r(t) to denote that defined by equation (2). The corresponding finite 
rates of increase will be written er and er(t). 

By manipulating equation ( I ) ,  Cole was able to obtain the remarkable result 
that, "for an annual species, the absolute gain in intrinsic population growth 
mhich could be achieved by changing to  the perennial reproductive habit mould 
be exactly equivalent to adding one individual to the average litter size" (Cole 
1954, p. 119). As Cole remarks, this result "arouses some curiosity as to why 
iteroparity exists a t  all." He was able to produce a partial solution to this 
problem by showing that for species which are not necessarily annual, k = 

er/(er- 1) (1954, eq. [25]). In  Cole's population model, the value of r depends 
on fecundity (b) and the age a t  maturity ( a )only. By solving this equation for 
various combinations of these two parameters, Cole was able to show that the 
advantage of iteroparity (insofar as this is measured by k) is increased as the 
age a t  first reproduction is delayed (1954, figs. 2 and 3). But his result for 
annual species remained a t  variance with observation until Gadgil and Bossert 
(1970) published a short analysis of the problem. They maintained that Cole's 
assumption that there is no prereproductive mortality is unreasonable. Because 
they wished to calculate the greatest possible advantage of iteroparity, it mas 
considered legitimate to retain the assumption that there is no postreproductive 
mortality, but they fixed the average rate of prereproductive mortality a t  a 
value just sufficient to maintain population number around some constant value. 
They were then able to obtain the much more plausible result that, '(for an 
annual species, the absolute gain in the Malthusian parameter mhich could be 
achieved by changing to the perennial reproductive habit would be approx- 
imately equal to doubling the average litter size" (p. 11). Their argument was 
further refined by Charnov and Schaffer (1973), who showed that when some 
degree of adult mortality was admitted, the condition fork = 1was the addition 
of p/s individuals to the semelparous litter, where p is the rate of postreproduc- 
tive and s the rate of prereproductive survival. The multiplicative form of 
Cole's result was amended both by Charnov and Schaffer and by Goodman 
(1974), who found that k = er/(er- p), Cole's original result being the special 
case in which 21 = 1. 

I shall now show that these arguments are special cases of a quite general set 
of equations. I shall consider an iteroparous population with fixed life history 
parameters mhich determine its rate of increase. An imaginary semelparous 
population has the same life history parameters, except that after the first 
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reproductive effort the rate of survival is zero. Without the use of restrictive 
assumptions, it is required to find the factor by which the litter size of semel- 
parous parents must be raised to cause the rate of increase of the semelparous 
population to equal that of the iteroparous population. 

Consider first the semelparous population. The number of animals alive in 
any given cycle will comprise the survivors of those born in the previous cycle, 
and of those which although born previously did not reproduce in the previous 
cycle : 

* = ( a - 1) 

f l ( t  + 1 )  = B ( t ) [ l- u(O)]+ C N ( x ,  t ) [ l  - ~ ( x ) ] ,  ( 3 )
1 

when h7(t)is the total number of individuals alive a t  time t ; B ( t ) is the number 
of newborn animals a t  time t ;  u ( x )  is the rate of mortality between ages x and 
( x  + 1) .  The census is taken after mortality but before reproduction. The 
summation on the right-hand side of the equation terminates a t  x = ( a  - 1 )  
since u ( x )  = 1 when x 2 a ,  ex hypothesi. Further: 

B ( t )  = bsN(a,  t ) .  (4) 

In  this and in subsequent arguments, the subscripts i and s mill refer to the 
values of a parameter in iteroparity and in semelparity, respectively. Sub- 
stituting this expression into equation ( 3 )and rewriting the age structure terms 
so that c(x ,  t )  is the frequency of animals age x in the population a t  time t : 

(a- 1) 

N ( t  + 1 )  = f l ( t )c(a,  t )bs[ l  - u(O)]+ N ( t )  c (x ,  t ) [ l  - u ( x ) ] .  ( 5 )  
1 

The finite rate of increase of the population is thus 

Note that since the age structure varies mith time, the finite rate of increase is 
not constant (see, e.g., Charlesworth 1970).Recall that the census is assumed to 
occur after mortality but before reproduction in each cycle. I n  the case of an 
annual species, the right-hand summation of equation ( 6 )vanishes, and since 
c(a,  t )  is the only age class in  the population a t  the time of census, me have 

I n  this case, the finite rate of increase depends only upon life history parameters 
which are assumed t o  be fixed and is therefore independent of time. If there is 
no mortality a t  any stage, equations ( 6 )and (7) both reduce to  

Before dealing mith the iteroparous population, tn-o minor points must be 
cleared up. First, because we shall allow fecundity t o  vary with age, it must be 
the fecundity a t  some given age that is compared with semelparous fecundity. 
The obvious choice is the initial iteroparous fecundity, b i ( a )Second, it will be 
assumed that there is no postreproductive life-that the last year in which an 
animal breeds is the year in which it dies. It can easily be verified that this 
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assumption does not affect the conclusion that will be reached. We can now 
proceed to give the recurrence relationship for population number in the 
iteroparous population, in which we must take into account the existence of 
age classes consisting of mature animals : 

1 a 

(9) 
The number of births is 

W 

B ( t )  = C ( x ,  t )b,(x) .  ( 10 )  
a 

Hence : 

The finite rate of increase is therefore 

( a - 1) w 

Putting s = [l - u(O)]and rearranging, 

In the case of an annual species, the right-hand summation of the right-hand 
side vanishes; further, if litter size does not vary with age, we have 

But since the census is taken after mortality and before reproduction, 

Thus, if the annual rate of survival of adults, p ( x )  = [ l  - u ( x ) ] ,is a constant, 
the whole of the bracketed expression on the right-hand side of the equation is 
a constant; and it  reduces to 

erz = (sbi + p ) .  (15)  

If there is no adult mortality, this becomes 

eri = (sb, + 1) .  (16)  

And if there is no mortality at any stage, it becomes 

erl = (b ,  + 1) .  (17)  
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These arguments can now be used to generate results for any desired set of 
conditions. I n  the general case, we can equate tlze finite rates of increase for 
semelparous and iteroparous populations given by equations (6) and (13), 
respectively, to  obtain 

( a - 1) 

sbscs(a, t) + C c,(x, t )[ l  - 4x11 
1 

w ( a - 1) 

= ci(z, t)[sbi(x) + p(x)I  + C ci(x, t )[ l  - ~ ( x ) ] .  (18) 
a 1 

Hence : 

If we denote the right-hand side of this equation by A ,  then we can obtain 

Except for the assumption that there is no postreproductive life (which changes 
the limits of summation terms in A) ,  this result is quite general. It mill be seen 
that in general k is not independent of time. I n  the case of annual species, the 
denominator in the expression for k disappears, since [,(a) = 1. Constant 
iteroparous fecundity simply replaces bi(z)with a constant bi and allows some 
rearrangement in A. The general equations generate the special results reported 
by previous authors, according to the conditions imposed on them. This is 
shown in table 2. 

The general rule expressed by equation (20) sho\vs that k depends largely on 
the values of s and a ,  which are regarded as fixed parameters identical in the 
two populations, and to a lesser extent on other factors which may be variable 
and which will be different in the two populations. The proportion of animals 
in the semelparous population which are in the at11 age class, c,(a), is diminished 
by adding more prereproductive age classes to the population, and therefore 
li: increases as a increases. Thus, the evolution of iteroparity is a more likely 
outcome of selection when maturity is delayed; this result was also obtained 
by Cole (1954). However, it is likely that the value of s ,  the rate of survival 
during tlze first year of life, is more critical. A reduction in the value of s will 
reduce c,(a) in all but annual species and mill a t  the same time act directly to  
raise the value of the numerator of the expression given in equation (20). Both 
effects will increase k .  Moreover, in the case of a population which is stationary 
in numbers and which has a stable age structure, it can be shown that k varies 
inversely with the square of s. For species which are not annual, the rate of 
prereproductive survival after the first year of life mill also appear in the equation 
for k,which it also influences through its effect on c(a). 
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The remaining parameter is A ,  which can be written 

This expression is t>he difference between the weighted mean age-specific rates 
of survival (excluding s) in iteroparity and semelparity, respectively, plus the 
weighted mean age-specific fecundity (excluding bi[a]) in iteroparity multiplied 
by s. 

Thus, the general formulation of Cole's result leads to no very neat generaliz- 
ation. Instead, the argument presented above might be interpreted as f011o~~'s. 
The likelihood that iteroparity will evolve in an initially semelparous population 
may be measured by the factor by which litter size must be increased in order 
to  achieve the same rate of population increase as that implied by a given 
iteroparous life history. When this factor is low, it is likely that increasing the 
litter size will be the easier solution; when it is high, iteroparity is likely to 
evolve. This factor is influenced by all the fixed parameters of the schedules of 
survival and fecundity and is in addition variable in time. In  particular, it will 
tend to increase and thus mabe the evolution of iteroparity more likely, if the 
age a t  maturity is delayed or if the rate of survival during the first year of life 
is reduced. 

TWO KINDS OF ITEROPARITY 

Iteroparity is not a simple phenomenon; some iteroparous animals breed 
only once in the year, while others reproduce almost continuously. I shall call 
these two extreme strategies "seasonal" and "continuous" iteroparity, re-
spectively. The relative fitness of the two types can be investigated just like that 
of semelparity and iteroparity, above. 

Consider a seasonal breeder which produces b offspring a t  one time in every 
year and a continuous breeder ~vhich produces one offspring b times every year. 
Both mature in year a.  The cycle of the seasonal breeder, in terms of which its 
rate of increase will be calculated, is 1yr, ~ ~ h i l e  that of the continuous breeder 
is ( l / b )  yr. Similarly, the age a t  maturity of the seasonal breeder is a cycles, 
I$-l-hilethat of the coilt~iiluous breeder is ab cycles. I shall use the same populatioil 
model as Cole (1954), each individual reproduciilg indefinitely without mortality. 

From the d,efinitions given in tlle previous paragraph, we can write re-
currence equations for population number : 

seasonal breeders : hTl(t+ 1) = er1N1(t) 

continuous breeders: hT,(t + 1) = e ' ~ ~ h ~ , ( t ) .  
(22) 

The subscripts 1 and 2 will be used to denote the value of parameters in 
seasonal and in continuous breeders, respectively. From equation (1)(see Cole 
1954): 
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PIIultiplying through by e'", erZ, we obtain 

If a seasonal and a continuous breeder n~hich are born a t  the same time also 
reproduce a t  the same time, then a t  the nlonleilt of maturity the seasonal 
breeder will produce b offspring, while the continuous breeder will produce only 
one offspring. Since, in general, earlier reproduction malres a greater con-
tribution to fitness than later reproduction, the seasonal breeder will inevitably 
be the more fit. Conversely, if the continuous breeder matures b cycles before 
the seasonal breeder, it will be the more fit. These are the two extremes of the 
general case in which the colltinuous breeder matures (g) years earlier than the 
seasonal breeder, where 1 > g > 0. We are now in a position to ask an 
interesting question: a t  what value of g does the fitness of t'he continuous 
breeder beconle equal to that of the seasonal breeder 7 

Substituting g into the lower equation of set (23), we can obtain a general 
expression for relative fitness : 

Equating this to unity and performing the necessary algebra, n-e obtain 

where g* is the value of g n~hen seasonal and continuous breeding have equal 
fitness. I n  general, this must be solved by substituting values of rl  obtained by 
iteration from the upper equation of set (23), remembering that T ,  = (r,/b) 
when f is set equal to unity. Values of g* are plotted against litter size b for 
different ages a t  maturity in figure 1. It can be seen that continuous breeding 
is always more likely to evolve in animals with very la,rge litters. Even in late- 
maturing forms, for which the graph of g* wit11 b always slopes upward, the 
necessity to mature 6 mo or so earlier may not be very arduous, since it 
represents only a few percent of prereproductive life. I11 early-maturing forms, 
the curve actually slopes dox~nnard after a litter size of 20 or so. This implies 
that the ideal conditions for the evolution of continuous iteroparity are a 
combination of early nlaturity and very large litter size. Vertebrate endo- 
parasites are perhaps the best-known example of aninlals n~hich breed contin- 
uously, and are remarkable not only for their early maturity but also for their 
enornlous egg production. Fusciolu, for example, reproduces for the first time 
a t  the age of about 6 1110 and thereafter produces several nlillion eggs every year. 

Seasonal and continuous breeding represent t ~ v o  extremes of a continuum; 
many animals produce offspring seasonally, but do so more than once a year. 
To make the treatment given above more general we might consider an animal 
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FIG.1.-Relationship of g* to litter size b, for different ages a t  maturity, in 
strictly continuous iteroparity. 

which reproduces n times per year, producing ( b / n )offspring on each occasion. 
By anaology with arguments presented above, we find that 

Solutions of this equation are shown in figure 2. It can be seen that g* varies 
monotonically with a and b ;  g* is larger for any n when a is large and b small. 

The arguments presented in this section cannot, of course, be applied 
straightforwardly to most natural situations. Seasonal breeding is commonly 
imposed by a seasonal environment, that is, by seasonal fluctuation in the 
probability of survival of offspring. The concl~~sions that have been reached, 
although they will influence events in a seasonal environment, can be tested 
only in an unvarying environment, and it is to be doubted that any environ- 
ment is ever constant for very long. Perhaps the nearest approaches are made 
by the abyssal regions of the sea and by the internal organs of homoiothermic 
vertebrates. Information concerning the breeding biology of abyssal organisms 
is scanty. George and Menzies (1967)have claimed that the isopod Storthyngura 
reproduces seasonally, but as Sanders and Hessler (1969)point out, George and 
Menzies's sample sizes are quite inadequate to bear their conclusion. Sanders 
and Hessler themselves have much more convincing data, which show that the 
isopod Ilyarchr~aand the bivalve Nucula reproduce almost continuously; on 
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FIG. 2n.-Relationship of g* to 1.1. a t  different ages a t  maturity. Calculated for a 
litter size of b = 1,000. 

n 

FIG. 2b.-Relationship of g* to  n a t  different fecundities. Calculated for an 
annual species. 
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the other hand, Schoener (1968) shours that reproduction is cyclic in two species 
of ophiuroid. Unfortunately, nothing appears to be known of the litter size or 
of the age a t  maturity in these animals, but a t  least i t  seems likely that  both 
seasonal and continuous iteroparity may evolve under conditions where the 
predictions set out above can be tested. Far more data is available for homoio- 
thermic endoparasites, and i t  has been pointed out above that  these agree with 
theoretical expectations. 

Under what conditions might an animal have t ~ v o  or more breeding seasons 
in a year, rather than just one ? Mature females, or females about to reproduce 
for the first time, assimilate energy in excess of their requirements for mainte- 
nance and growth. This excess energy is used for the maturation of oocytes. It 
might be shared equally among all the developing oocytes, so that all developed 
a t  the same rate; or i t  might be shared unequally, so that some were ready for 
oviposition before most had started their development. If all the oocytes could 
be matured a t  age a ,  then half the oocytes could be matured a t  some age 
(a - g) if they received all the available excess energy, the other half being 
matured subsequently in the same year. If g is larger than g* for the life history 
of a given animal, selection will tend to favor the adoption of two periods of 
oviposition rather than one. A possible example of such a process is provided 
by the work on the smooth newt, Triturus vulgaris (Linn) (Bell and Lawton 
1975). Courtship and oviposition occur during the spring, but there are two 
distinct periods of oviposition, one centered around May 7 and the other around 
July 14. The difference between the two is thus about g = 68 days. Smooth 
newts mature a t  about 4-7 years of age and have a mean litter size of roughly 
80-100 female eggs per female (see Bell 1973; Bell and Lawton 1975). The value 
of g* calculated for these parameters is about 0.22. Smooth newts in midland 
England spend about 4 mo of the year in hibernation (Smith 1964), so that 
about 8 mo remain for feeding and the maturation of oocytes. Thus, we have 
g* =.0.22 x 8 mo 55 days. This is consistent with theoretical expectation. N 

It is not claimed that the above observations constitute a rigorous test of the 
theory developed in the first part of this section, for the sufficient reason that 
while the theory is very simple, the animals are not. For example, newts which 
mature a t  different times in the year will experience different rates of mortality 
as adults, changes in the density of larval populations caused by splitting the 
breeding season may change prereproductive survival, energy may not be 
assimilated as quickly earlier in the year, the number of oocytes that can be 
matured a t  any one time may be limited to some extent by the space available 
in the body cavity, and so forth. But it can be claimed that theoretical pre- 
dictions are consistent with what has been observed in certain natural situations. 

VARIATION I N  THE ACE AT MATURITY 

I assumed above that all the individuals in a given population reproduce for 
the first time a t  the same age, but it is well linown that in natural populations 
there is sometimes considerable variation in the age a t  maturity. This variation 
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is potentially of great biological interest, because it concerns a character which 
always has some effect on fitness, and which under certain circumstances- 
when the population is very rapidly increasing in numbers, for example-may 
be the single most important determinant of fitness (see Lewontin 1965). 

In  general, fitness is maximized by maturing as soon as possible. But in a t  
least one set of circumstances often encountered in nature, this may not be so. 
Consider a species in which fecundity increases with age and in which immature 
animals survive better than adults. An animal which reproduces for the first 
time in a given year realizes a part of its total fitness a t  the cost of reducing the 
probability that it will survive to the following year. Further, by maturing for 
the first time in the following year, its fecundity when it did reproduce for the 
first time would be greater, since fecundity is assumed to increase with age. 
Clearly, it may he advantageous to delay maturity, depending on the ratio of 
juvenile to adult survival and on the rate a t  which fecundity increases with age. 
This idea can be expressed more precisely in mathematical terms. 

Let us assume that any given animal matures a t  a years of age and that the 
earliest age a t  which maturity can possibly occur is a*. We wish to  calculate the 
rate of increase of animals maturing a t  a years of age. Inserting terms for 
survival, we can expand equation ( 1 )to obtain 

Suppose that fecundity increases by some factor h per annum, so that b(x  + 1)= 

h .b ( z ) ;of course b(a)  = h("-"*)b(a*),where b(a*)will be taken to be a constant. 
For convenience, we designate q = pic. Equation (26)can then be rearranged 
to give 

This is the general implicit equation for the rate of increase of individuals 
maturing a t  age a ,  under the conditions of the model. We now wish to  linom 
what the effect of a is on r when the other life history parameters are given, 
although it will, in fact, be found more convenient to use the finite rate of 
increase er rather than r. Implicit differentiation of equation (27)yields 

der sb(a*)(ch)("-"*I.In (ch)-
da el('-')[a - hqc . (a  - 1)e-*I' 

Consider first the case in which juvenile and adult survival are equal (p = 1)  
and in which fecundity does not vary with age ( h  = 1) . Since the annual rate 
of juvenile survival, c, is less than unity, In ch < 0. The derivative is therefore 
negative if aer("- > c(a - l )er("-*) .This is invariably satisfied, provided that 
r is positive. In  general, increasing the age a t  maturity will decrease the rate of 
increase of a population, as expected. But the derivative is positive in sign if 
er < [c(a - l ) ] / a .Thus, a heritable tendency for delayed maturity may be 
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favorably selected, even though fecundity is constant aiid juveniles survive 
a t  the same rate as adults, if the population is decreasing in numbers rather 
rapidly. This can be appreciated intuitively: for the same reason that animals 
with long generation times will increase in numbers relatively s l o ~ ~ l y ,  they will 
also decrease in numbers relatively slowly. If we allo~v h aiid q to differ from 
unity, the evolution of delayed maturity is possible even in an expanding 
population. For the derivative of equation (28) to  be positive, numerator and 
denominator must be of like sign; thus r increases with a if q > aer/[hc(a - l)] 
and h < l/c, or q < aePi[hc(a- l ) ]  and h > lie. 

TTTOcaveats should be added to this conclusion. First, I assumed that a*, 
the first possible age a t  maturity, is one; if this is not so, then s must refer to the 
survival between age zero and age a*. Second, and more important, the model 
does not include any allo~vance for the energy cost of reproduction. If fecundity 
is proportional to  size, and if the rate of growth in size is diminished by re- 
production, an animal ~vhich matures a t  any given age will be less fecund in 
the fol lo~~~ing year than an aninlal reproducing for the first time in that year. 
This situation, ~vhich is probably conimon among poikilotl~ern~ous vertebrates, 
will further favor the evolution of delayed maturity. I t  will be explored in a 
paper presently in preparation. 

Thus, selection may favor an increase or a decrease in the age a t  maturity. 
It is clear from equation (28) that,  because the derivative cannot be equated 
to zero, there is strictly no optinznl age a t  maturity-not a t  least under the 
conditioils of the model used. Instead, selection will tend to increase or decrease 
the age a t  maturity until selection is prevented from making further progress 
by factors inherent in the biology of the animal concerned. This process may 
lead to  variation in the age at  maturity both within and between populations 
and to secular changes in the mean age a t  maturity. A11 three phenonlena have 
been observed in nature. Variation within populations is common in long-lived 
birds: examples are given by Hornberger (1957, white stork), Coulson and 
White (1958, kitti~vake), Serventy (quoted in Lack 1966, p. 261, shearwater), 
Mertz (1971, condor), and many other authors. Variation among populations 
has been especially well documented in the salamander Desnzog~zathz~s ochro-
phaeus (Tilley 1973) and in the trout (Alm 1949 and 1959). Changes in the age of 
maturity n-it11 time are more difficult to observe but seen1 to have occurred in 
heavily exploited whale populations (Gulland 1970). 1411 these phenomel-~a could 
be interpreted as adaptive responses to the selective forces that have been 
described above, and in many cases this int,erpretation is probably valid. 
Xevertheless, it is not a conclusion that should be drawn too lightly, since 
identical phenomena may be caused by nonselective agencies. 

Suppose that all females in a population produce offspring among which the 
different phenotypes are represented in some const'ant ratio, a phenotype being 
maturation a t  a given age. That is, differences in the age a t  maturity exist but 
are not heritable. Let some of these offspring mature a t  a years of age and others 
a t  b, c, . . . , z years of age. Individuals maturing a t  age a are called type A 
individuals, and so forth. For the case of a population in unrestrict'ed exponen- 
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tial gro\xth with no mortality a t  any stage, Cole (1960) obtained a difference 
equation in Y: 

1 = nAeCra + + . . . + nzeCr, (29 

where 12, is the number of type A individuals per litter, and so forth. As this 
relationship lzolds not only for the population as a whole but also for any type 
~vithin the population, the proportions of the different phenotypes will reach a 
stable distribution n.hicll is go^-ernad 71y the well-linonn equation discovered 
by Sharpe and Lotka (1911) .Cole is then able to prove that, under the conclitions 
of his population model, early-maturing pl~enot~ypes will be less corninon in the 
equilihriunl population than late-maturing phenotypes. The situation can be 
treated more realistically by assuming the population to be stationary in size 
and to be undergoing real rates of mortality expressed by tlie terms for "larval," 
juvenile, and adult survival n-hich have previously been defined. After a little 
algebra, n-e find that the fraction of aninlals age n: which are of type A ,  c,(x) 
is given by 

where f, is the fraction of the offspring of any female whicll are of type A ,  and 
l ( x )is of course a f~~nc t ion  c, ancl 2). The predictions of this equation are of s, 

quite different from those of Cole's. I t  is governed largely by the value of s ,  
the rate of survival during the first year of life; as s approaches zero, the stable 
frequencies of the different phenotypes approach tlze fixed offspri~ig phenotype 
frequencies. kIoreover, a change in s whicli acts equally on all phenotypes will 
change their stable frequencies in tlie population. Change in s will, therefore, 
be acconlpanied by secular change in phenotype freque~icies; and differences 
in s among populations will cause differences ill phenotype frequencies. Thus, 
nonselective changes in mortality act'ing on environmental variation in the age 
a t  maturity inay mirnic selection acting on heritable variation. 

DISCUSSION 

A very con~mon criticism of inathematical arguments in biology is that by 
ignoring nlucll of the complexity of matural populatioils they generate pre- 
dictions whicll, ~vhile appearing to be general, rely 011 special sets of co~lditioils 
rarely e~lcou~lterecl in nature. This niay be circuinvent~ed to some extent by, as 
Leviiis (1966) puts it, sacrificing generality of prediction for precision. For 
example, the general solutioil to Cole's result that was proposed in the first part 
of this paper is rnucll more generally applicable to real populatioils than the 
original result; but as a result its conseclueilces are more difficult to identify. 
One reason for this is that some of tlle paranieters in ecluation ( 2 0 )are explicitly 
dependent on tirne, which may be a comniol~ feature of fitness and fitness 
arlalogues (see Charlesn-orth 1970).The solut,ion of equation ( 2 0 )for a particular 
set of parai~leters is shon-11 in figure 3 ; the siinulation represents a population in 
~vhich prereproductive survival is initially very high but declines monotonically 
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to reach a constant value in the tenth cyc1e.l It can be seen that k fluctuates 
very considerably before settling down to a constant value as the population 
approaches age structure equilibrium n hen the value of prereproductive survival 
becomes constant. Even this is a gross underestimate of the conlplexity of any 
real situation, however, as the solution relies on the assumption that  the life 
history parameters nhich determine the age distribution are themselves fixed 
or eventually become fixed. This is unlikely to be true In most real populations; 
and coilsequently the age structure, and with i t  k ,  will never reach constant 
values. The magnitude of this effect and its relevance to  the evolution of the 
life history nill depend on the biology of the particular organism being studied, 
but it is clear that any formal mathematical solution nill be very difficult to 
discover nhen such a problem is stated in the most general terms. 

One alternative to a formal solution is to specify a population of numbers, 
with properties thought to represent adequately those of a population of 
animals, and then to observe its behavior by numerical simulation on a com- 
puter. This has the advantage of getting somenhat closer to the natural 
situation and the disadvantage that shortcomings in the logic used to nrite the 
computer program are often more difficult to  see than similar fallacies in 

1 The life table used for the iteroparous population was initially: 

l (0 )  = 1 
l ( 1 )  = s = 0.9 
l ( 2 )  = 0.8s b (2 )  = 10 1(2)b(2)= 7.2 
l ( 3 )  = 0.4s b ( 3 )  = 15 1(3)b(3)= 5.4 
l ( 4 )  = 0.2s b ( 4 )  = 25 1(4)b(4)= 4.5 
l ( 5 )  = 0 

x = w  


Z l ( z ) b ( z )= 17.1 

This was taken to represent a newly founded colony growing very rapidly under near 
optimal conditions. The initial age structure essentially comprised newborn animals only, 
c(o)  = 0.96. Small representation of later age classes was necesrary for the program to be 
acceptecl. I t  was imagined that as exponential growth proceeded, the environment pro- 
gressively deteriorated, causing a decrease in prereproductive survival, s. This occurred 
over a period of 10 cycles, a t  the end of which the population was stationary in numbers 
with: 

This was done by generating a new value of s in every cycle: 

where 
X = w 

R ,  = Z a ( z ) b ( x ) .  

When j = 10, s ( j )  = s ( o ) ( l / R , ) , the value necessary to maintain a stationary population. 
In  the semelparous population, it was required that fecundity and the age a t  maturity 
were the same as in the iteroparous population. The value of s ( j )  in semelparity was 
calculated from the equation given above, using R ,  = 17.1, and not using the value of R, 
in semelparity. In  this way, the two populations remained comparable, and the calculation 
of b valid, throughout the simulation. 
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10 

cycle 

FIG.3.-Exact solution of equation (20) for a given population moclel 

formal nlathematical analysis. This approach has been used by Murphy (1968) 
and by Hairston et al. (1970) to  identify components of the fitness of iteroparity 
which cannot be deduced from simpler population models. Both assunled that 
the form of the life history was controlled by a single locus with two alleles, 
one homozygote conferring semelparity and the other iteroparity, the hetero- 
zygote being intermediate. All three genotypes were assigned the sa,me net 
reproductive rate, and as a consebuence their absolute fitnesses in a given 
population were determined solely by their generation times. 3Iurphy found 
that whea in any given year the rate of prereproductive survival was put 
arbitrarily a t  0.1 or 1, the more iteroparous phenotype was retained in the 
population ~vhen under a regime of some constant value of prereproductive 
survival it would have been lost. Hairston et  al. criticized this experinlent on 
the grounds that Murphy had introduced strong density-dependent mortality 
by setting an upper limit to population size and adjusting recruitment to this 
figure. Their simulation, which produced essentially the same result, included 
a constant birth rate and a rate of prereproductive survival n,hich was a 
normally distributed random variable. Both experiments can be interpreted 
in the same way. It has been pointed out above that phenotypes with longer 
generation times will, in simple populations, increase in numbers less rapidly 
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when the population as a whole is increasing rapidly and will decrease less 
rapidly when the population as a ~vhole is decreasing. Thus, in the simulations 
of Illurphy and of Hairston et al., the iteroparous phenotypes will have a smaller 
variance in T ;  this will cause a smaller variance in phenotype nunlbers (see 
Bartlett 1966), mlzich is equivalent to a smaller probability of extinction. This 
kind of effect may well be iillportant in environments which fluctuate v+-ith a 
cycle much shorter than the generation time of a given iteroparous life history. 

Illoreover, it can be shown that the genetic consequences of senlelparity and 
iteroparity are somewhat different. Consider a population of annually breeding 
semelparous animals with some rate of prereproductive survival such that the 
population as a whole is stationary in size. Clearly, we have er = (sb) w 1. I n  
each generation of sexual reproduction, the surviving progeny of a given parent 
are outcrossed to unrelated individuals-it is assumed for simplicity that no 
inbreeding occurs. The number of animals related by descent to an original 
parent (i.e., possessing any fraction of the original parental genome) is Oherefore 
doubled in each generation. If we write the rate of increase in the number of 
related individuals as u,then we have el' = 2(sb) w 2. At the same time, the 
fraction of the original parental genome possessed by any descendant of 
the nth generation is exactly one-half of that possessed by a descendant of the 
(72 - 1)th generation. Thus, using zc to mean the rate of increase of the original 
parental genome, we can write eW = [2(sb)]/2 = (sb) - 1. That is, t'he original 
parental genome is conserved indefinitely when it is assumed t'hat no selection 
takes place. I n  the iteroparous population with the same charact'eristic, 
except that adult animals survive with a frequency p per annum and breed 
in every year of their lives, we have, from equation (15), er = (sb + p )  w 

(1 + p) .  I n  each generation, each animal gives rise to (2sb + p )  descendants- 
its two surviving progeny plus its own probability of survival. Thus, e" = 

(2sb + p) .  The surviving progeny of any parent will be related to  it by a factor 
of one-half, and of course if it survives it m;ill be related to  itself by a factor of 
one. Therefore eW= {[2(sb)/2]+ p )  = (sb + p )  - (1 + p) .  We can now 
compare senlelparity and iteroparity with respect to increase in population size, 
in the number of descendants, and in the fraction of the parental genome 
transmitted : 

eri/erS= (sb + p)/(sb) 5 2 

eui/e""= (2sb + p)/(2sb) 5 1.5 

ewi/eWs= (sb + p)/(sb) _< 2. 

Then if we equate the rates of increase in number of the semelparous and 
iteroparous populations, we have e"L/e"s= (2sb + p)/2(sb + p )  < 1. Thus, 
the number of descendants of an original parent will increase less rapidly in 
iteroparity than in semelparity; conversely, the mean relatedness of these 
descendants to the original parent is proportionately greater. Iteroparity, so 
to speak, involves putting more of one's genetic eggs into the same somatic 
basket. 

Thus, the dynamics of selection on even an apparently simple life history 
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dichotomy may be very complex, and any attempt to test general mathematical 
theorems by reference to  examples collated (sometimes, perhaps, rather 
selectively collated) from the literature may be seriously misleading. The 
identifiable predictions of theorems xvhich are general enough to be interesting 
will rarely be sufficiently precise or sufficiently exclusive to be adequately 
tested in this way. This is not a counsel of despair, nor is it merely an appeal to 
the rather defensive mysticism sometimes professed by nonmatlleniatical 
naturalists, nor is it a denial that broad biological generalizations occasionally 
achieve brilliant success. But it does suggest that the primary function of 
mathematics in biology lies, not in the statement of general laws, but rather in 
stimulating the imagination of the field naturalist. Only by reference to detailed 
observations of particular situations can the relevance of results such as those 
set out above be assessed. And if this is to be done, it cannot be urged too 
strongly that mathematical arguineilts should be presented so that they can 
be follo~ved by an interested naturalist. No one should be obliged to  ignore an 
argument or to take it on trust because its proponent is unable or unwilling to 
express it in terms that a layman can understand. 

L. C. Cole proved, for a particular population model, that a semelparous 
population with mean fecundity (b + I )  would have the same rate of increase 
as an iiidefinit'ely iteroparous population with mean fecundity ( b ) . This result 
seemed so surprising that several attempts have since been made to reconcile 
it xvith reality. It is shown that they represent various special cases of a general 
equation which is derived from first principles and whose properties are ex- 
plained. It is concluded that the evolution of iteroparity will be favored by a 
number of factors and particularly by delayed maturity and by reduction in 
the rate of survival during the first year of life. 

Iteroparity is not a simple phenomenon; individuals may breed only once 
in a given year, they may breed several times, or they may breed almost 
continuously. The relative fitness of these strategies is defined, and it is suggested 
that almost continuous breeding is mot likely to evolve in animals which mature 
early in life and produce very large numbers of eggs. 

In  the third section, the consequences of variation in the age a t  maturity 
are explored. An equation is given which yields r for an individual maturing a t  
any given age and is used to  define conditions that r should increase with 
delayed maturity. These arguments emphasize the idea that,  as the result of 
selection, the age a t  maturity may vary within and among populations and 
may also change with time. It is then shown that identical phenomena may be 
observed even if the age a t  tnaturity has no heritable component. I t  is concluded 
that variation in this character 111ust be interpreted cautiously. 

Finally, attention is drawn to the deficiencies of the simple population 
models used in this paper. The time dependence of certain terms in the general 
equations, the effects of variance in population size, and differences in the 
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genetics of semelparity and iteroparity combine to make general predictions 
from simple models naive and precise predictions from general models difficult 
to  identify, It is concluded that ideas such as those presented here can be tested 
adequately only by detailed reference to particular situations. 

I am grateful to  Professor M. H. TTilliamson for a discussion on the nature 
of r. Dr. B. Charlesworth and an anonymous referee made useful comments on 
parts of the manuscript. 
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