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Dissociations between the evolution of phenotypes and their
underlying genotypes are emerging as a general feature of
biological systems (Abouheif, '97; Wray and Abouheif, '98; True
and Haag, 2001; Bowsher et al., 2007). One type of dissociation is
known as developmental system drift (DSD; True and Haag, 2001)
or phenogenetic drift (Weiss and Fullerton, 2000), where
homologous traits in closely or distantly related species can be
produced by non‐homologous cell precursors, and/or non‐
homologous genes, gene expression patterns, or gene functions.
DSD reflects a pattern, which is known to occur in a broad range of
traits and organisms, such as the vulva in nematodes (Eizinger and
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Sommer, '97; Louvet‐Vallee et al., 2003; Kiontke et al., 2007),
horns in dung beetles (Moczek and Nagy, 2005; Moczek
et al., 2006; Moczek and Rose, 2009), segmentation in insects
(Lynch et al., 2006), and sex determination in turtles (Torres
Maldonado et al., 2002; Shoemaker et al., 2007; Valenzuela, 2010)
and flies (Marin and Baker, '98; Schutt and Nothiger, 2000).
Despite its ubiquity as well as its name that unfortunately suggests
that DSD is synonymous with neutral drift, we actually have little
understanding of the evolutionary and developmental dynamics
and processes underlying DSD. To address this problem, we focus
on wing polyphenism in ants, which is the ability of a single
genome to produce winged and wingless castes in response to
environmental cues, such as photoperiod, temperature, and
nutrition (Abouheif and Wray, 2002). Wing polyphenism in
ants is a classic example of DSD; it is a universal and homologous
trait across all ant species (Abouheif and Wray, 2002; Brady
et al., 2006), yet the gene network that underlies wing
polyphenism is evolutionarily labile (Abouheif and Wray, 2002;
Bowsher et al., 2007; Nahmad et al., 2008; Shbailat et al., 2010).
Previous studies have shown that expression of this “wing‐
patterning” network is largely conserved in the wing discs of
winged castes (queens and males) of ants relative to Drosophila
and other holometabolous insects (Cohen, '93; Carroll et al., '94,
2005; Keys et al., '99; Weatherbee et al., '99; Abouheif and
Wray, 2002; Tomoyasu et al., 2005, 2009; Bowsher et al., 2007;
Shbailat et al., 2010). In contrast, the network is evolutionarily
labile in wingless castes, that is, it is interrupted at different points
in the wingless castes of different ant species (Abouheif and
Wray, 2002; Bowsher et al., 2007; Shbailat et al., 2010). The current
pattern of DSD underlyingwing polyphenism in ants suggests that
the expression of all genes in the network in wingless castes is
labile because the interruption of all genes whose expression we
have sampled in wingless castes is labile between species, castes,
and even within castes (Abouheif and Wray, 2002; Bowsher
et al., 2007; Shbailat et al., 2010). Therefore, an important question
arising from this current pattern is whether all genes in the
network are labile or are there genes that are non‐labile?
Recent theoretical and empirical studies in ants (Nahmad

et al., 2008; Shbailat et al., 2010) have focused on the gene brinker
(brk) as a potential key node that mediates the suppression of
wings in the wingless castes of ants. brk is part of the
Decapentaplegic (Dpp) signaling pathway (Campbell and Tom-
linson, '99; Jazwinska et al., '99; Minami et al., '99; Fig. 1) and
plays an important role in mediating growth, patterning, and
apoptosis in the wing discs of Drosophila. Dpp and Brk form
inverse gradients that have opposing effects on growth and
modulate cell proliferation rate throughout Drosophila wing disc
(Schwank et al., 2008). Up‐regulation of brk (Martin et al., 2004;
Schwank et al., 2008) or down‐regulation of the Dpp signaling
pathway (Zecca et al., '95; Campbell and Tomlinson, '99;
Jazwinska et al., '99; Martin‐Castellanos and Edgar, 2002; Martin
et al., 2004; Schwank et al., 2008) reduces growth and induces

apoptosis in the Drosophila wing disc (Moreno et al., 2002), and
down‐regulates the expression of the Dpp signaling target genes:
spalt (sal), optomotor blind (omb), vestigial Quadrants (vgQ), and
daughters against dpp (dad; Campbell and Tomlinson, '99;
Jazwinska et al., '99; Minami et al., '99; Martin et al., 2004;
Affolter and Basler, 2007; Fig. 1). brk (and not dpp) is thought to be
a key node because when both brk and dpp signaling are
ubiquitously expressed, wing discs and adult wings become
significantly reduced in size (Martin et al., 2004; Schwank
et al., 2008).
In the wing discs (Fig. 2G0) of winged castes (Fig. 2G) of the ant

species Pheidole morrisi, Shbailat et al. (2010) showed that,
expression of brk is conserved relative to its expression in
Drosophila wing discs. In the wingless castes of P. morrisi,
however, brk expression was predicted to be up‐regulated or
ubiquitously expressed in vestigial wing discs or primordia to slow
growth and induce apoptosis (Nahmad et al., 2008). The wingless
caste of P. morrisi is composed of “soldier” (Fig. 2H) and “minor
worker” (Fig. 2I) sub‐castes, where soldier larvae possess only one

Figure 1. A general representation of the wing-patterning
network in Drosophila during last larval instar. A set of
transcription factors and signaling molecules regulates the
patterning and growth of the anterior–posterior (A–P) and
dorsal–ventral (D–V) compartments (Cohen, '93; Carroll
et al., 2005). In the A–P compartments, en acts as a selector
gene that specifies the posterior compartment. En activates the
expression of hedgehog (hh). Hh then acts as a short-range
signaling molecule that activates the expression of decapenta-
plegic (dpp). Dpp signaling activates the expression of the
downstream target genes primarily by repressing the expression
of brk. In the D–V compartments, apterous (ap) acts as a selector
gene that specifies the dorsal compartment. Ap activates serrate
(ser). Ser ligand binds to the Notch receptor, which subsequently
activates Notch signaling. Notch signaling in turn activates cut (ct),
vestigial (vg) at the boundaries of the wing pouch, and wingless
(wg). Wingless signaling then activates the expression of other
downstream target genes.
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Figure 2. The size and morphology of wing discs in winged castes and vestigial wing discs in wingless workers of Myrmicine and Formicine
ant species during the last larval instar. (A–C) winged queens and (D–F) wingless workers of Crematogaster lineolata, Tetramorium caespitum,
and Lasius niger. (A′–F′) Schematic diagrams of the fore‐ and hindwing discs (fwd, hwd) showing (A′–C′) wing discs of winged castes and (D′–
F′) vestigial wing discs of wingless workers in the above ant species. (G) Winged queen, (H) wingless soldier, and (I) wingless minor worker of
Pheidole morrisi. Schematic diagrams showing (G′) fore‐ and hindwing discs of winged castes, (H′) vestigial forewing disc and expected
position of vestigial hindwing primordium of soldiers (dotted line), and (I′) expected positions of vestigial fore‐ and hindwing primordia of
minor workers (dotted line) in P. morrisi. ANT represents anterior, POST represents posterior, PROX represents proximal, and DIST represents distal.
[Color figure can be seen in the online version of this article, available at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552‐5015]

J. Exp. Zool. (Mol. Dev. Evol.)

76 SHBAILAT AND ABOUHEIF

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-5015


pair of relatively large vestigial forewing discs but no visible
hindwing discs (Fig. 2H0), and minor worker larvae lack visible
vestigial wing discs entirely (Fig. 2I0). Shbailat et al. (2010) showed
that, in the vestigial forewing disc in soldiers, brk expression is
absent throughout its development. This absence of brk is likely to
be actively and independently maintained throughout develop-
ment because other genes in the network, such as en, wingless
(wg), extradenticle (exd), Ultrabithorax (Ubx), scalloped (sd), dpp,
and sal are expressed (Abouheif and Wray, 2002; Shbailat
et al., 2010). Furthermore, the absence of brk expression in this disc
is correlated to its rapid growth in the last larval instar (Wheeler
and Nijhout, '81), and the abnormal growth of the anterior and
posterior compartments (Shbailat et al., 2010). These correlations
suggest that brk may play a role in controlling the growth of this
disc, and more generally, suggest that the differential expression
of brk betweenwinged andwingless castes plays an important role
in wing polyphenism in P. morrisi (Shbailat et al., 2010).
The main goal of our study was to determine whether the

absence of brk expression is a unique (evolutionarily labile)
interruption point of the vestigial soldier forewing discs in P.
morrisi or whether it is a conserved (non‐labile) interruption point
in the vestigial wing discs of the wingless castes of other ant
species. In addition, we chose to examine en expression because:
(1) it is a gene that is upstream of brk; (2) it lies at the top of the
network that patterns the anterior–posterior of the Drosophila
wing disc (Held, 2002; Fig. 1); and (3) it is known from previous
studies to be a labile interruption point between different ant
species (Abouheif and Wray, 2002; Bowsher et al., 2007; Shbailat
et al., 2010). Therefore, we wanted to determine how the lability or
non‐lability of brk expression occurs relative to en, an upstream
gene known to be labile. Because brk expression has only been
characterized in the vestigial forewing discs of P. morrisi soldiers,
we examined the expression of brk and en in the other vestigial
wing primordia and sub‐castes of P. morissi (i.e., vestigial
hindwing primordia of P. morrisi soldiers and vestigial wing
primordia of P.morrisiminor workers; Fig. 2H0 and I0), as well as in
vestigial wing discs in the worker castes of three additional ant
species: Crematogaster lineolata, Tetramorium caespitum, and
Lasius niger (Fig. 2D–F0). We chose these ant species (Fig. 2A–F0)
because they represent a balanced phylogenetic sample of species
from the Myrmicinae and Formicinae (Brady et al., 2006; Moreau
et al., 2006), the two largest sub‐families of ants (Brady
et al., 2006; Moreau et al., 2006), and their vestigial wing disc
size and shape (Fig. 2D0–F0) are representatives of the size range
observed inMyrmicines and Formicines (Wheeler and Nijhout, '81;
Fig. 2H0 and I0).

MATERIALS AND METHODS

Ant Collection and Staging
We collected P. morrisi, T. caespitum, and C. lineolata colonies in
Long Island, New York, USA, and L. niger in Montreal, Quebec,

Canada. We kept colonies of these species in (33 cm � 22 cm �
11 cm) plastic boxes with glass tubes filled with water
constrained by cotton wool, and we fed them on a combination
of mealworms, crickets, and the Bhatkar‐Whitcomb diet (Bhatkar
and Whitcomb, '70). We maintained all colonies under 27°C, 70%
humidity, and 12:12 hr of day:night cycle. We identified the last
larval instar for both winged and wingless castes of P. morrisi, T.
caespitum, C. lineolata, and L. niger according to the following
criteria published byWheeler and Nijhout ('81): (1) the color of the
gut was brown; (2) the wings and legs reached their maximum
sizes but not evaginated; and (3) the prepupal cuticle was not
formed.

Gene Cloning and Sequencing
We extracted genomic DNA using the CTAB DNA preparation
(Levitan and Grosberg, '93). We amplified fragments of brk from C.
lineolata, T. caespitum, and L. niger. The amplified fragments
flanked part of the coding region that starts near the 50 end of the
gene and continues toward the 30 end. We designed and used the
following primers based on brk sequence from P. morrisi (Shbailat
et al., 2010): forward 50‐GCAAAACCAACGTGCAACTGCAAG‐30

and 50‐CTGCAAGGAAATACGGTATTCATCG‐30, and reverse 50‐
GAGGAGGTACATCGTAGGAGTCGTC‐30. We used the following
PCR conditions: 94°C for 3 min (1 cycle), 94°C for 45 sec, 55°C for
45 sec, and 72°C for 2 min (40 cycles), and 72°C for 5 min (1
cycle). By aligning brk DNA sequence of P. morrisi (Shbailat
et al., 2010) with brkDNA sequences from all the above species, we
confirmed that brk sequences from all of these species lack introns.

Sequence Comparisons
We aligned Brk sequences from P. morrisi, C. lineolata, T.
caespitum, and L. niger to their respective ortholog from D.
melanogaster (GenBank accession number: NP_511069) using
Clustal W. In the examined ant species, we searched for the
conserved first and second Brk DNA binding domains (BrkDBDs)
using the NCBI Conserved Domain Database (Cordier et al., 2006).
GenBank accession number for brk from P. morrisi is HM045781
(Shbailat et al., 2010), C. lineolata is JF682358, L. niger is
JF682359, and T. caespitum is JF682360.

Gene Expression Analysis
We fixed final instar larvae for 2 hr at room temperature, then we
washed and stored them in methanol at �20°C as described in
Patel ('94). We performed antibody staining for En protein using
the anti‐En antibody (Mab 4D9, Patel et al., '89, a gift from Prof.
Nipam Patel) following the procedure in Patel ('94). We incubated
the larvae overnight at 4°C with anti‐En antibody at 1/3 dilution,
and then with anti‐mouse antibody conjugated with horseradish
peroxidase at 1/300 dilution. We performed brk in situ
hybridization according to the protocol in Tautz and Pfeifle
('89) with some modifications. For penetration, we incubated
dissected larvae of P. morrisi and C. lineolatawith sodium dodecyl
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sulfate (SDS). Because SDS was insufficient to penetrate wing
discs in winged queens and males in T. caespitum and L. niger, we
incubated dissected larvae with proteinase K. For probe
hybridization, we hybridized larvae of the four examined species
overnight at 58°C with brk Digoxigenin labeled probe (Roche
Diagnostic Canada, Laval, Quebec, Canada). For detection of
labeled probe, we incubated the larvae overnight at 4°C with anti‐
Digoxigenin antibody conjugated with alkaline phosphatase
(Roche Diagnostic Canada) at 1/2,000 dilution. In the examined
ant species, to confirm that the absence of En and brk expression is
real, and not an artifact, we stained larvae of winged castes within
the same tube as worker larvae as a control for the expression
pattern in the wing discs. Moreover, we over developed the
staining reaction for larvae of both winged castes and workers to
ensure that there is no weak signal present in the vestigial discs.
Finally, we stained for brk expression in winged castes and
wingless soldiers of P. morrisi using both sense and antisense
mRNA (Fig. S1).

RESULTS

Cloning and Analysis of brk Orthologs From Ants
In Drosophila melanogaster, brk contains a single Brk DNA
binding domain (DBD), which plays a role in repressing the
expression of its target genes (Winter and Campbell, 2004; Cordier
et al., 2006). We cloned fragments of brkwhich correspond to part
of the coding region of the gene that starts near the 50 end and
continues toward the 30 end. We cloned: 2,080 bp from C.
lineolata, 2,097 bp from T. caespitum, and 2,043 bp from L. niger.

A protein sequence analysis showed that these cloned fragments
as well as that from P. morrisi (Shbailat et al., 2010) contain two
Brk DNA binding domains: BrkDBD1, which is located near the N‐
terminal end of the protein, and BrkDBD2 (Cordier et al., 2006). In
the examined ant species, BrkDBD2 follows BrkDBD1 by 415–431
amino acids, and the cloned fragments include part of BrkDBD1
and all BrkDBD2. Furthermore, a protein sequence alignment
shows high similarity between BrkDBD1 in different ant species
and that in Drosophila (Fig. 3A), as well as between BrkDBD1 and
BrkDBD2 in ants and between these two domains and the single
DBD in Drosophila (Fig. 3B). Collectively, these results indicate
that the fragments we cloned from ants are brk orthologs.

The Expression of En and brk Is Conserved Between Winged
Castes of Four Ant Species and Drosophila
In the winged castes of C. lineolata, T. caespitum, L. niger, and P.
morrisi, En is expressed in the posterior compartment of wing
discs (Fig. 4A–C and G), whereas brk expression is restricted to the
lateral regions of the anterior and posterior of the wing hinge, as
well as the upper peripheral region of the wing pouch (Fig. 4D–F
and H). Furthermore, brk expression in the posterior compartment
is more expanded relative to the anterior one (Fig. 4D–F and H).
The expression of both En and brk is similar to their expression in
ants (Abouheif and Wray, 2002; Bowsher et al., 2007; Shbailat
et al., 2010) and Drosophila (Garcia‐Bellido and Santamaria, '72;
Campbell and Tomlinson, '99; Jazwinska et al., '99; Minami
et al., '99) indicating that the expression of both genes is
conserved.

A

B

---------------------HDKDCRQNQRATARKYGIHRRQIQKWLQCEEQLRNSVEN
----------------------------NQRATARKYGIHRRQIQKWLQCEEQLRNSVEN
---------------------------------ARKYGIHRRQIQKWLQCETQLRNSVEN
---------------------------------ARKYGIHRRQIQKWLQCEEQLRSSVEN
KMGSRRIFTPHFKLQVLESYRNDNDCKGNQRATARKYNIHRRQIQKWLQCESNLRSSVAN

****.************* :**.** * 

---------------------HDKDCRQNQRATARKYGIHRRQIQKWLQCEEQLRNSVEN
---------------------------------ARKYGIHRRQIQKWLQCETQLRNSVEN
----------------------------NQRATARKYGIHRRQIQKWLQCEEQLRNSVEN
---------------------------------ARKYGIHRRQIQKWLQCEEQLRSSVEN
KMGSRRIFTPHFKLQVLESYRNDNDCKGNQRATARKYNIHRRQIQKWLQCESNLRSSVAN
--TRRRSFPLRFKLDVLDAFHRDKEVKENQRATARKFGINRRQVQKWLEQEAELRDEIAL
--TRRRSFPLRFKLDALDAFHRDKEVKENQRATARKFGINRRQVQKWLEQEADLRDEIAL
--TRRRSFPLRFKLNVLDAFHRDKEVKRNQRATARKFGINRRQVQKWLEQEADLRDEIAL
--TRRRSFPLRFKLEVLDAFHQDKEVKENQRATARKFGINRRQVQKWLEQEPELRDESAL

***:.*:***:****: * :**..

P. morrisi-DBD1
C. lineolata-DBD1

T. caespitum-DBD1
L. niger-DBD1

D. melanogaster-DBD

P. morrisi-DBD1
T. caespitum-DBD1

C. lineolata-DBD1
L. niger-DBD1

D. melanogaster-DBD
L. niger-DBD2

C. lineolata-DBD2
P. morrisi-DBD2

T. caespitum-DBD2

Figure 3. Comparative sequence analysis of Brk between different ants and its respective ortholog in Drosophila melanogaster. (A) Amino
acid sequence alignment for part of BrkDBD1 from the following ant species: P. morrisi, C. lineolata, T. caespitum, and L. niger with BrkDBD
from D. melanogaster. (B) Amino acid sequence alignment of BrkDBD1 and BrkDBD2 from P. morrisi, C. lineolata, T. caespitum, and L. niger
with BrkDBD from D. melanogaster. In the examined ant species, BrkDBD1, which is located near the N-terminal regions of the protein, is
followed by BrkDBD2.

J. Exp. Zool. (Mol. Dev. Evol.)

78 SHBAILAT AND ABOUHEIF



Figure 4. Continued.
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In Wingless Castes of Four Ant Species, En Expression Is Absent in
Some Species But Is Conserved in Others, While brk Expression Is
Absent in All of These Species
We found that in the vestigial wing discs of C. lineolata and T.
caespitum workers, En expression is absent relative to its
expression in the wing discs of winged castes (compare Fig. 4A0

and B0 with A and B). However, in the vestigial wing discs of L.
nigerworkers, En is expressed in the bottom half, which represents
the posterior compartment of the vestigial wing discs (Fig. 4C0).
This pattern of En expression in the vestigial wing discs of workers
is similar to its expression in early wing discs of winged castes,
where it is also expressed in the bottom half of the wing discs (Inset
in Fig. 4C). In P. morrisi, En is expressed in the posterior
compartment of the vestigial forewing disc of soldiers, but is
absent in the expected position of vestigial hindwing primordium
of soldiers and vestigial fore‐ and hindwing primordia of minor
workers (Abouheif and Wray, 2002; Shbailat et al., 2010; Fig. 4G0

and G00). Therefore, the expression of En is labile within and
between wingless castes of different ant species in that it is absent
in some species but is conserved in others. Regardless of the
presence or absence of En expression (Fig. 4A0–C0 and G0 and G00),
brk expression is absent in the vestigial wing discs in all examined
ant species (Fig. 4D0–F0 and H0; Shbailat et al., 2010), as well as in
the expected position of the vestigial hindwing primordium of
soldiers and vestigial wing primordia of minor workers of P.
morrisi (Fig. 4H0 and H00). Therefore, in all four species, the
interruption of brk expression in the vestigial wing discs or
primordia of wingless castes is non‐labile.

DISCUSSION
Our results show that: (1) in all four ant species, the expression of
En and brk in the wing discs of winged castes is conserved relative
to that in Drosophila; and (2) in the wingless castes of these
species, brk expression is absent in all species, whereas En
expression is present in the vestigial wing discs of some species but
not in others. These results indicate that the absence of brk
expression may be a conserved non‐labile interruption point in
the network of vestigial wing discs in the wingless castes of species
that belong to the two largest and derived sub‐families of ants: the

Myrmicinae and Formicinae. The conservation of brk expression
in winged castes of these species indicates that the role of brk as a
growth repressor may be conserved. This is a reasonable
assumption given that RNAi knockdown of genes in the network
controlling wing development in the beetle Tribolium castaneum,
which is a close relative of ants, shows that their function is largely
conserved (Tomoyasu et al., 2005, 2009). Furthermore, all genes in
the wing network sampled, including brk, show a similar pattern
of expression relative to Drosophila (Abouheif and Wray, 2002;
Bowsher et al., 2007; Shbailat et al., 2010). In wingless castes,
however, the absence of brk expression in these species may also
play a role in growth control. This assumption is built on the
finding that in P. morrisi soldier larvae the absence of brk
expression is correlated to the rapid growth of this disc during the
last larval instar as well as disruption of normal growth of the
anterior and posterior compartments within the vestigial disc
(Wheeler and Nijhout, '81; Shbailat et al., 2010). To understand the
possible role and origin of brk absence, future studies should test
the function of brk in these ant species. Moreover, Myrmicinae and
Formicinae are derived subfamilies of ants, and therefore, species
of ants that belong to the basal sub‐families should be sampled to
uncover whether the absence of brk is general and evolved near
the origin of wing polyphenism in ants or whether it is only a
feature of derived ant species.
Our results also have important implications for understanding

the dynamics of DSD underlying wing polyphenism in ants. All of
the genes in the network whose expression has been previously
sampled have been shown to be evolutionarily labile between
wingless worker castes of different ant species (Abouheif and
Wray, 2002; Bowsher et al., 2007; Shbailat et al., 2010). This
lability can be explained by directional natural selection, where
each interruption point plays a functionally important role in
suppressing wing development (Abouheif and Wray, 2002;
Abouheif, 2004; Nahmad et al., 2008; Shbailat et al., 2010). In
this case, the lability of interruption points is caused by directional
selection acting directly onmany different genes in the network in
different species, or indirectly through directional selection on a
correlated phenotype (Abouheif and Wray, 2002; Abouheif, 2004;
Nahmad et al., 2008; Shbailat et al., 2010). Alternatively, this

3
Figure 4. En and brk expression in the wing discs of winged castes and vestigial wing discs of wingless castes in different ant species during
the end of last larval instar. (A–F) Wing discs in winged castes of C. lineolata, T. caespitum, and L. niger showing (A–C) En protein expression
and (D–F) brk mRNA expression. (A0–F0) Vestigial wing discs in the wingless workers of the above ant species representing (A0–C0) En protein
expression and (D0–F0) brk mRNA expression. Arrowheads indicate vestigial fore- and hindwing discs of workers. Insets in (A0–F0) show the
expression of En and brk in the vestigial forewing discs of wingless workers, while inset in (C) shows the expression of En in early wing disc in
winged castes of L. niger. (G–G00) En expression and (H–H00) brk expression in P. morrisi in (G and H) wing disc of winged castes, (G0 and H0)
vestigial forewing disc and expected position of vestigial hindwing primordium of soldier (asterisk), and (G00–H00) expected positions of
vestigial fore- and hindwing primordia of minor worker (asterisks). All images were taken at the same magnification and are all to scale. All
insets were also taken at the samemagnification and are all to scale. The wing discs of winged castes are oriented such that hinge is to the top
and posterior is to the right.
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lability can been explained by neutral drift, where interruption
points do not play a functional role in repressing wing
development (Abouheif andWray, 2002; Abouheif, 2004; Nahmad
et al., 2008; Shbailat et al., 2010), and the wing imaginal disc is
simply eliminated through apoptosis in the last stages of
development (Sameshima et al., 2004; Shbailat et al., 2010). The
differential lability between brk expression (non‐labile) and an

upstream gene en (labile) raises the possibility that the non‐labile
interruption points in the network may be under stabilizing
selection, whereas the labile ones are either under directional
selection or neutrally drifting (Nahmad et al., 2008). This
possibility is supported by: (1) the general absence of brk
expression in the wing primordia and vestigial wing discs in
wingless castes of four Myrmicine and Formicine ant species,

Figure 5. Differential lability of genes in the network underlying wing polyphenism in ants. The bottom row above the phylogeny shows
schematic diagrams of wing discs in winged castes (R), and vestigial wing discs in wingless workers (W) of the following ant species: C.
lineolata, T. caespitum, and L. niger. For P. morrisi, schematic diagrams are shown for vestigial wing discs and primordia for both wingless
soldiers [W(SD)] and wingless minor workers [W(MW)], where arrowheads mark the forewing disc and hindwing primordium of soldier, and
dotted vestigial wing discs represent the expected position of the hindwing primordium of soldier as well as the expected positions of the
fore‐ and hindwing primordia of minor worker. The middle row shows diagrams of the wing network in the wingless castes of ants. For P.
morrisi, left panel represents the network in the forewing discs of soldiers, while right panel represents the network in the expected position of
hindwing primordia of soldiers as well as the expected positions of fore‐ and hindwing primordia of minor workers. The top row shows
diagrams of the wing network in winged castes of ants. Within each of the panels, green boxes mark conservation of gene expression relative
to Drosophila and red boxes mark interruption of gene expression. Below the phylogeny is the gene network that regulates growth and
patterning of Drosophilawing disc throughout development (see Fig. 1). The expression of en, Ubx, and exd in the winged castes and wingless
workers of C. lineolata, and the expression of en, Ubx, exd, sal, sd, and wg in the winged castes and wingless soldiers and minor workers of P.
morrisi are based on Abouheif andWray (2002). The expression of dpp and brk in the winged castes and wingless soldiers of P. morrisi is based
on Shbailat et al. (2010). Phylogenetic relationships are based on Brady et al. (2006) and Moreau et al. (2006).
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especially in the case of P. morrisi soldiers and L. niger workers,
where En expression is present while brk expression is absent
(Fig. 5); and (2) the stark contrast between the evolutionary non‐
lability of brk and the lability of all of the other interruption points,
including en, known to be labile in the gene network (Abouheif
andWray, 2002; Bowsher et al., 2007; Shbailat et al., 2010; Fig. 5).
This mix of evolutionary labile and non‐labile genes in the
network in wingless castes of ants may be a general feature of
networks underlying polyphenic traits.
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